public member function
<random>

std::uniform_real_distribution::operator()

(1)
template<class URNG>result_type operator()(URNG& g);
(2)
template<class URNG>result_type operator()(URNG& g, const param_type& parm);
Generate random number
Returns a new random number that follows the distribution's parameters associated to the object (version 1) or those specified by parm (version 2).

The generator object (g) supplies uniformly-distributed random integers through its operator() member function. The uniform_real_distribution object transforms the values obtained this way so that successive calls to this member function with the same arguments produce floating-point values that follow a uniform distribution within the appropriate range.

Parameters

g
A uniform random number generator object, used as the source of randomness.
URNG shall be a uniform random number generator type, such as one of the standard generator classes.
parm
An object representing the distribution's parameters, obtained by a call to member function param.
param_type is a member type.

Return value

A new random number.
result_type is a member type, defined as an alias of the first class template parameter (RealType).

Example

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
// uniform_real_distribution example
#include <iostream>
#include <chrono>
#include <random>

int main()
{
  // construct a trivial random generator engine from a time-based seed:
  unsigned seed = std::chrono::system_clock::now().time_since_epoch().count();
  std::default_random_engine generator (seed);

  std::uniform_real_distribution<double> distribution (0.0,100.0);

  std::cout << "some random numbers between 0.0 and 100.0: " << std::endl;
  for (int i=0; i<10; ++i)
    std::cout << distribution(generator) << std::endl;

  return 0;
}

Possible output:
some random numbers between 0.0 and 100.0:
23.1577
23.5385
59.1238
97.6146
30.5588
60.3992
55.2728
65.9
2.71713
49.2802


Complexity

Amortized constant (a constant number of invocations of g.operator()).

See also