1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
|
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
/* propriedades do sistema */
const double rcp = 2.5; /* raio de corte */
int N; /* numero de particulas */
double rho; /* densidade do sistema */
double L; /* aresta da caixa*/
double dt; /* duracao de um passo de tempo */
double runtime; /* quanto tempo demora a correr */
long seed; /* semente do gerador de numeros aleatorios */
double K; /* energia cinetica */
double U; /* energia potencial */
double H; /* energia total */
double T; /* temperatura cinetica */
/* estrutura para as propriedades de um atomo */
struct Atom
{
double rx, ry, rz; /* posicao */
double px, py, pz; /* momento */
double fx, fy, fz; /* forca */
};
/* funcao para configurar o cubo */
double latticex, latticey, latticez;
void makeLatticePosition(double a)
{
static int i = 0;
static int j = 0;
static int k = 0;
latticex = i*a - 0.5*L;
latticey = j*a - 0.5*L;
latticez = k*a - 0.5*L;
i = i + 1;
if ( i*a > L - 1.0e-6 )
{
i = 0;
j = j + 1;
if ( j*a > L - 1.0e-6 )
{
j = 0;
k = k + 1;
if ( k*a > L - 1.0e-6 )
{
i = 0;
j = 0;
k = 0;
}
}
}
}
double makePeriodic(double u)
{
while ( u < -0.5*L )
{
u = u + L;
}
while ( u >= 0.5*L )
{
u = u - L;
}
return u;
}
void computeForces(struct Atom atoms[])
{
int i, j;
double dx, dy, dz;
double r, r2, r2i, r6i;
double fij;
double eij;
U = 0;
for ( i = 0; i < N; i = i + 1 )
{
atoms[i].fx = 0;
atoms[i].fy = 0;
atoms[i].fz = 0;
}
for ( i = 0; i < N-1; i = i + 1 )
{
for ( j = i+1; j < N; j = j + 1 )
{
dx = makePeriodic(atoms[i].rx - atoms[j].rx);
dy = makePeriodic(atoms[i].ry - atoms[j].ry);
dz = makePeriodic(atoms[i].rz - atoms[j].rz);
r2 = dx*dx + dy*dy + dz*dz;
if ( r2 < rcp*rcp )
{
r2i = 1/r2;
r6i = r2i*r2i*r2i;
fij = 48*r2i*r6i*(r6i-0.5);
eij = 4*r6i*(r6i-1);
atoms[i].fx = atoms[i].fx + fij*dx;
atoms[i].fy = atoms[i].fy + fij*dy;
atoms[i].fz = atoms[i].fz + fij*dz;
atoms[j].fx = atoms[j].fx - fij*dx;
atoms[j].fy = atoms[j].fy - fij*dy;
atoms[j].fz = atoms[j].fz - fij*dz;
U = U + eij;
}
}
}
}
double gaussian()
{
static int have = 0;
static double x2;
double fac, y1, y2, x1;
if ( have == 1 )
{
have = 0;
return x2;
}
else
{
y1 = drand48();
y2 = drand48();
fac = sqrt(-2*log(y1));
have = 1;
x1 = fac*sin(2*M_PI*y2);
x2 = fac*cos(2*M_PI*y2);
return x1;
}
}
void initialize(struct Atom atoms[])
{
double scale, a;
int i;
/* gerar posicoes */
a = L/(int)(cbrt(N)+0.99999999999);
for ( i = 0; i < N; i = i + 1 )
{
makeLatticePosition(a);
atoms[i].rx = latticex;
atoms[i].ry = latticey;
atoms[i].rz = latticez;
}
srand48(seed);
scale = sqrt(T);
K = 0;
for ( i = 0; i < N; i = i + 1 )
{
atoms[i].px = scale*gaussian();
atoms[i].py = scale*gaussian();
atoms[i].pz = scale*gaussian();
K = K
+ atoms[i].px*atoms[i].px
+ atoms[i].py*atoms[i].py
+ atoms[i].pz*atoms[i].pz;
}
T = K/(3*N);
K = K/2;
computeForces(atoms);
H = U + K;
printf("# time E U K T <[H-<H>]^2>\n");
}
void integrateStep(struct Atom atoms[])
{
int i;
for ( i = 0; i < N; i = i + 1 )
{
atoms[i].px = atoms[i].px + 0.5*dt*atoms[i].fx;
atoms[i].py = atoms[i].py + 0.5*dt*atoms[i].fy;
atoms[i].pz = atoms[i].pz + 0.5*dt*atoms[i].fz;
}
FILE *outfile;
outfile=fopen("out.txt","a");
for ( i = 0; i < N; i = i + 1 )
{
atoms[i].rx = atoms[i].rx + dt*atoms[i].px;
atoms[i].ry = atoms[i].ry + dt*atoms[i].py;
atoms[i].rz = atoms[i].rz + dt*atoms[i].pz;
fprintf(outfile, "%s %8.6f %8.6f %8.6f\n",
"H", atoms[i].rx, atoms[i].ry, atoms[i].rz);
}
fclose(outfile);
computeForces(atoms);
K = 0;
for ( i = 0; i < N; i = i + 1 )
{
atoms[i].px = atoms[i].px + 0.5*dt*atoms[i].fx;
atoms[i].py = atoms[i].py + 0.5*dt*atoms[i].fy;
atoms[i].pz = atoms[i].pz + 0.5*dt*atoms[i].fz;
K = K
+ atoms[i].px*atoms[i].px
+ atoms[i].py*atoms[i].py
+ atoms[i].pz*atoms[i].pz;
}
T = K/(3*N);
K = K/2;
H = U + K;
}
void run()
{
struct Atom atoms[N];
int numSteps = (int)(runtime/dt + 0.5);
int count;
int numPoints = 0;
double sumH = 0;
double sumH2 = 0;
double avgH, avgH2, fluctH;
initialize(atoms);
for ( count = 0; count < numSteps; count = count + 1 )
{
integrateStep(atoms);
sumH = sumH + H;
sumH2 = sumH2 + H*H;
numPoints = numPoints + 1;
avgH = sumH/numPoints;
avgH2 = sumH2/numPoints;
fluctH = sqrt(avgH2 - avgH*avgH);
printf("%8.6f %8.6f %8.6f %8.6f %8.6f %8.6f\n",
count*dt, H/N, U/N, K/N, T, fluctH/N);
}
}
int main()
{
printf("#Enter number of particles (N): ");
fflush(stdout);
scanf("%d", &N);
printf("#Enter density (rho): "); fflush(stdout);
scanf("%lf", &rho);
printf("#Enter initial temperature (T): ");
fflush(stdout);
scanf("%lf", &T);
printf("#Enter runtime: ");
fflush(stdout);
scanf("%lf", &runtime);
printf("#Enter time step (dt): ");
fflush(stdout);
scanf("%lf", &dt);
printf("#Enter random seed: ");
fflush(stdout);
scanf("%ld", &seed);
L = cbrt(N/rho);
printf("\n#N=%d L=%lf T=%lf runtime=%lf dt=%lf seed=%ld",
N, L, T, runtime, dt, seed);
run();
return 0;
}
|