binary search and sequential search algorithm

Write a program to find the number of comparisons using the binary search and sequential search algorithms
1
2
3
4
5
6
7
8
9
10
11
12
13
//main.cpp
#include <cstdlib>
#include <iostream>
#include "orderedArrayListType.h"
using namespace std;

int main()
{
cout << "." << endl;

return 0;
}


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
//arraylisttype.h
#ifndef H_arrayListType
#define H_arrayListType

#include <iostream>
#include <cassert>

using namespace std;

template <class elemType>
class arrayListType
{
public:
const arrayListType<elemType>& operator=
(const arrayListType<elemType>&);
//Overloads the assignment operator
bool isEmpty() const;
//Function to determine whether the list is empty
//Postcondition: Returns true if the list is empty;
// otherwise, returns false.
bool isFull() const;
//Function to determine whether the list is full.
//Postcondition: Returns true if the list is full;
// otherwise, returns false.
int listSize() const;
int maxListSize() const;
void print() const;
bool isItemAtEqual(int location, const elemType& item) const;
void insertAt(int location, const elemType& insertItem);
void insertEnd(const elemType& insertItem);
void removeAt(int location);
void retrieveAt(int location, elemType& retItem) const;
void replaceAt(int location, const elemType& repItem);
void clearList();
int seqSearch(const elemType& item) const;
void insert(const elemType& insertItem);
void remove(const elemType& removeItem);

arrayListType(int size = 100);

arrayListType(const arrayListType<elemType>& otherList);

~arrayListType();

protected:
elemType *list; 
int length;
int maxSize; 
};

template <class elemType>
bool arrayListType<elemType>::isEmpty() const
{
return (length == 0);
}

template <class elemType>
bool arrayListType<elemType>::isFull() const
{
return (length == maxSize);
}

template <class elemType>
int arrayListType<elemType>::listSize() const
{
return length;
}

template <class elemType>
int arrayListType<elemType>::maxListSize() const
{
return maxSize;
}

template <class elemType>
void arrayListType<elemType>::print() const
{
for (int i = 0; i < length; i++)
cout << list[i] << " ";

cout << endl;
}

template <class elemType>
bool arrayListType<elemType>::isItemAtEqual
(int location, const elemType& item) const
{
return(list[location] == item);
}

template <class elemType>
void arrayListType<elemType>::insertAt
(int location, const elemType& insertItem)
{
if (location < 0 || location >= maxSize)
cerr << "The position of the item to be inserted "
<< "is out of range" << endl;
else if (length >= maxSize) //list is full
cerr << "Cannot insert in a full list" << endl;
else
{
for (int i = length; i > location; i--)
list[i] = list[i - 1]; //move the elements down

list[location] = insertItem; //insert the item at the
//specified position

length++; //increment the length
}
} //end insertAt

template <class elemType>
void arrayListType<elemType>::insertEnd(const elemType& insertItem)
{

if (length >= maxSize) //the list is full
cerr << "Cannot insert in a full list" << endl;
else
{
list[length] = insertItem; //insert the item at the end
length++; //increment the length
}
} //end insertEnd

template <class elemType>
void arrayListType<elemType>::removeAt(int location)
{
if (location < 0 || location >= length)
cerr << "The location of the item to be removed "
<< "is out of range" << endl;
else
{
for (int i = location; i < length - 1; i++)
list[i] = list[i+1];

length--;
}
} //end removeAt

template <class elemType>
void arrayListType<elemType>::retrieveAt
(int location, elemType& retItem) const
{
if (location < 0 || location >= length)
cerr << "The location of the item to be retrieved is "
<< "out of range." << endl;
else
retItem = list[location];
} //end retrieveAt


template <class elemType>
void arrayListType<elemType>::replaceAt
(int location, const elemType& repItem)
{
if (location < 0 || location >= length)
cerr << "The location of the item to be replaced is "
<< "out of range." << endl;
else
list[location] = repItem;

} //end replaceAt

template <class elemType>
void arrayListType<elemType>::clearList()
{
length = 0;
} //end clearList

template <class elemType>
int arrayListType<elemType>::seqSearch(const elemType& item) const
{
int loc;
bool found = false;

for (loc = 0; loc < length; loc++)
if (list[loc] == item)
{
found = true;
break;
}

if (found)
return loc;
else
return -1;
} //end seqSearch

template <class elemType>
void arrayListType<elemType>::insert(const elemType& insertItem)
{
int loc;

if (length == 0) //list is empty
list[length++] = insertItem; //insert the item and
//increment the length
else if (length == maxSize)
cerr << "Cannot insert in a full list." << endl;
else
{
loc = seqSearch(insertItem);

if (loc == -1) //the item to be inserted
//does not exist in the list
list[length++] = insertItem;
else
cerr << "the item to be inserted is already in "
<< "the list. No duplicates are allowed." << endl;
}
} //end insert

template<class elemType>
void arrayListType<elemType>::remove(const elemType& removeItem)
{
int loc;

if (length == 0)
cerr << "Cannot delete from an empty list." << endl;
else
{
loc = seqSearch(removeItem);

if (loc != -1)
removeAt(loc);
else
cout << "The item to be deleted is not in the list."
<< endl;
}
} //end remove

template <class elemType>
arrayListType<elemType>::arrayListType(int size)
{
int maxSize;
if (size < 0)
{
cerr << "The array size must be positive. Creating "
<< "an array of size 100. " << endl;

maxSize = 100;
}
else
maxSize = size;

length = 0;

list = new elemType[maxSize];
assert(list != NULL);
}

template <class elemType>
arrayListType<elemType>::~arrayListType()
{
delete [] list;
}


template <class elemType>
arrayListType<elemType>::arrayListType
(const arrayListType<elemType>& otherList)
{
maxSize = otherList.maxSize;
length = otherList.length;
list = new elemType[maxSize];
assert(list != NULL); 
//memory space

for (int j = 0; j < length; j++) 
list [j] = otherList.list[j];
} //end copy constructor

template <class elemType>
const arrayListType<elemType>& arrayListType<elemType>::operator=
(const arrayListType<elemType>& otherList)
{
if (this != &otherList) 
{
delete [] list;
maxSize = otherList.maxSize;
length = otherList.length;

list = new elemType[maxSize]; 
assert(list != NULL); 
//space, terminate the program
for (int i = 0; i < length; i++)
list[i] = otherList.list[i];
}

return *this;
}

#endif


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
//orderedarraylist.h
//orderedArrayListType//
#ifndef H_OrderedListType
#define H_OrderedListType

#include <iostream>
#include "arrayListType.h"

using namespace std;
double list;
int length;
int maxSize;

template<class elemType>
class orderedArrayListType: public arrayListType<elemType>
{
public:
void insertOrd(const elemType&);

int binarySearch(const elemType& item) const;

orderedArrayListType(int size = 100);
};

template <class elemType>
void orderedArrayListType<elemType>::insertOrd(const elemType& item)
{
double list;
int length;
int first = 0;
int last = length - 1;
int mid;
int maxSize;
bool found = false;

if (length == 0) 
{
list[0] = item;
length++;
}
else if (length == maxSize)
cerr << "Cannot insert into a full list." << endl;
else
{
while (first <= last && !found)
{
mid = (first + last) / 2;

if (list[mid] == item)
found = true;
else if (list[mid] > item)
last = mid - 1;
else
first = mid + 1;
}//end while

if (found)
cerr << "The insert item is already in the list. "
<< "Duplicates are not allowed." << endl;
else
{
if (list[mid] < item)
mid++;

insertAt(mid, item);
}
}
}//end insertOrd

template<class elemType>
int orderedArrayListType<elemType>::binarySearch
(const elemType& item) const
{
int first = 0;
int last = length - 1;
int mid;

bool found = false;

while (first <= last && !found)
{
mid = (first + last) / 2;

if (list[mid] == item)
found = true;
else if (list[mid] > item)
last = mid - 1;
else
first = mid + 1;
}

if (found)
return mid;
else
return -1;
}//end binarySearch

template<class elemType>
orderedArrayListType<elemType>::orderedArrayListType(int size)
: arrayListType<elemType>(size)
{
}

#endif

please help me cant get an output out of dis code . . .
Write a program to find the number of comparisons using the binary search and sequential search algorithms
Are you expected to write your own containers?

If not, you can use standard containers that are linear and binary searches (like vector and set), then pass in your own comparison thing with a counter on it, then display the counter.

It'll be much simpler.
this is the full questions for the above pre-solution

Write a program to find the number of comparisons using the binary search and sequential search algorithms as follows:
Suppose list is an array of 1000 elements.
a. Use a random number generator to fill list.
b. Use any sorting algorithm to sort list. Alternatively, you can use the function insertOrd to initially insert all the elements in the list.
c. Search the list for some items, as follows:
i. Use the binary search algorithm to search the list. (You might need to modify the algorithm to count the number of comparisons.)
ii. Use the binary search algorithm to search the list, switching to a sequential search when the size of the search list reduces to less than 15. (Use the sequential search algorithm
for a sorted list.)
d. Print the number of comparisons for Steps c.i and c.ii. If the item is found in the list, then print its position.

1
2
3
4
5
6
int main()
{
  cout << "." << endl;

return 0;
}

... cant get an output out of dis code ...

Your main() does not instantiate/use any of your code.
Ok, that doesn't say anything about writing your own containers. It talks about a list of elements, but that's a generic term. Really, you need a container you can do a linear and binary search on; a vector.

The find() function does a linear search. If you use the version with a predicate, you can pass in a functor (an object that can be called like a function) that can keep count for you.
http://en.cppreference.com/w/cpp/algorithm/find

Similarly, binary_search() does a ... There's a version that takes a predicate that you treat in the same way.
http://en.cppreference.com/w/cpp/algorithm/binary_search
Topic archived. No new replies allowed.