binary search and sequential search algorithm
Sep 16, 2013 at 12:20pm UTC
Write a program to find the number of comparisons using the binary search and sequential search algorithms
1 2 3 4 5 6 7 8 9 10 11 12 13
//main.cpp
#include <cstdlib>
#include <iostream>
#include "orderedArrayListType.h"
using namespace std;
int main()
{
cout << "." << endl;
return 0;
}
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
//arraylisttype.h
#ifndef H_arrayListType
#define H_arrayListType
#include <iostream>
#include <cassert>
using namespace std;
template <class elemType>
class arrayListType
{
public :
const arrayListType<elemType>& operator =
(const arrayListType<elemType>&);
//Overloads the assignment operator
bool isEmpty() const ;
//Function to determine whether the list is empty
//Postcondition: Returns true if the list is empty;
// otherwise, returns false.
bool isFull() const ;
//Function to determine whether the list is full.
//Postcondition: Returns true if the list is full;
// otherwise, returns false.
int listSize() const ;
int maxListSize() const ;
void print() const ;
bool isItemAtEqual(int location, const elemType& item) const ;
void insertAt(int location, const elemType& insertItem);
void insertEnd(const elemType& insertItem);
void removeAt(int location);
void retrieveAt(int location, elemType& retItem) const ;
void replaceAt(int location, const elemType& repItem);
void clearList();
int seqSearch(const elemType& item) const ;
void insert(const elemType& insertItem);
void remove(const elemType& removeItem);
arrayListType(int size = 100);
arrayListType(const arrayListType<elemType>& otherList);
~arrayListType();
protected :
elemType *list;
int length;
int maxSize;
};
template <class elemType>
bool arrayListType<elemType>::isEmpty() const
{
return (length == 0);
}
template <class elemType>
bool arrayListType<elemType>::isFull() const
{
return (length == maxSize);
}
template <class elemType>
int arrayListType<elemType>::listSize() const
{
return length;
}
template <class elemType>
int arrayListType<elemType>::maxListSize() const
{
return maxSize;
}
template <class elemType>
void arrayListType<elemType>::print() const
{
for (int i = 0; i < length; i++)
cout << list[i] << " " ;
cout << endl;
}
template <class elemType>
bool arrayListType<elemType>::isItemAtEqual
(int location, const elemType& item) const
{
return (list[location] == item);
}
template <class elemType>
void arrayListType<elemType>::insertAt
(int location, const elemType& insertItem)
{
if (location < 0 || location >= maxSize)
cerr << "The position of the item to be inserted "
<< "is out of range" << endl;
else if (length >= maxSize) //list is full
cerr << "Cannot insert in a full list" << endl;
else
{
for (int i = length; i > location; i--)
list[i] = list[i - 1]; //move the elements down
list[location] = insertItem; //insert the item at the
//specified position
length++; //increment the length
}
} //end insertAt
template <class elemType>
void arrayListType<elemType>::insertEnd(const elemType& insertItem)
{
if (length >= maxSize) //the list is full
cerr << "Cannot insert in a full list" << endl;
else
{
list[length] = insertItem; //insert the item at the end
length++; //increment the length
}
} //end insertEnd
template <class elemType>
void arrayListType<elemType>::removeAt(int location)
{
if (location < 0 || location >= length)
cerr << "The location of the item to be removed "
<< "is out of range" << endl;
else
{
for (int i = location; i < length - 1; i++)
list[i] = list[i+1];
length--;
}
} //end removeAt
template <class elemType>
void arrayListType<elemType>::retrieveAt
(int location, elemType& retItem) const
{
if (location < 0 || location >= length)
cerr << "The location of the item to be retrieved is "
<< "out of range." << endl;
else
retItem = list[location];
} //end retrieveAt
template <class elemType>
void arrayListType<elemType>::replaceAt
(int location, const elemType& repItem)
{
if (location < 0 || location >= length)
cerr << "The location of the item to be replaced is "
<< "out of range." << endl;
else
list[location] = repItem;
} //end replaceAt
template <class elemType>
void arrayListType<elemType>::clearList()
{
length = 0;
} //end clearList
template <class elemType>
int arrayListType<elemType>::seqSearch(const elemType& item) const
{
int loc;
bool found = false ;
for (loc = 0; loc < length; loc++)
if (list[loc] == item)
{
found = true ;
break ;
}
if (found)
return loc;
else
return -1;
} //end seqSearch
template <class elemType>
void arrayListType<elemType>::insert(const elemType& insertItem)
{
int loc;
if (length == 0) //list is empty
list[length++] = insertItem; //insert the item and
//increment the length
else if (length == maxSize)
cerr << "Cannot insert in a full list." << endl;
else
{
loc = seqSearch(insertItem);
if (loc == -1) //the item to be inserted
//does not exist in the list
list[length++] = insertItem;
else
cerr << "the item to be inserted is already in "
<< "the list. No duplicates are allowed." << endl;
}
} //end insert
template <class elemType>
void arrayListType<elemType>::remove(const elemType& removeItem)
{
int loc;
if (length == 0)
cerr << "Cannot delete from an empty list." << endl;
else
{
loc = seqSearch(removeItem);
if (loc != -1)
removeAt(loc);
else
cout << "The item to be deleted is not in the list."
<< endl;
}
} //end remove
template <class elemType>
arrayListType<elemType>::arrayListType(int size)
{
int maxSize;
if (size < 0)
{
cerr << "The array size must be positive. Creating "
<< "an array of size 100. " << endl;
maxSize = 100;
}
else
maxSize = size;
length = 0;
list = new elemType[maxSize];
assert(list != NULL);
}
template <class elemType>
arrayListType<elemType>::~arrayListType()
{
delete [] list;
}
template <class elemType>
arrayListType<elemType>::arrayListType
(const arrayListType<elemType>& otherList)
{
maxSize = otherList.maxSize;
length = otherList.length;
list = new elemType[maxSize];
assert(list != NULL);
//memory space
for (int j = 0; j < length; j++)
list [j] = otherList.list[j];
} //end copy constructor
template <class elemType>
const arrayListType<elemType>& arrayListType<elemType>::operator =
(const arrayListType<elemType>& otherList)
{
if (this != &otherList)
{
delete [] list;
maxSize = otherList.maxSize;
length = otherList.length;
list = new elemType[maxSize];
assert(list != NULL);
//space, terminate the program
for (int i = 0; i < length; i++)
list[i] = otherList.list[i];
}
return *this ;
}
#endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
//orderedarraylist.h
//orderedArrayListType//
#ifndef H_OrderedListType
#define H_OrderedListType
#include <iostream>
#include "arrayListType.h"
using namespace std;
double list;
int length;
int maxSize;
template <class elemType>
class orderedArrayListType: public arrayListType<elemType>
{
public :
void insertOrd(const elemType&);
int binarySearch(const elemType& item) const ;
orderedArrayListType(int size = 100);
};
template <class elemType>
void orderedArrayListType<elemType>::insertOrd(const elemType& item)
{
double list;
int length;
int first = 0;
int last = length - 1;
int mid;
int maxSize;
bool found = false ;
if (length == 0)
{
list[0] = item;
length++;
}
else if (length == maxSize)
cerr << "Cannot insert into a full list." << endl;
else
{
while (first <= last && !found)
{
mid = (first + last) / 2;
if (list[mid] == item)
found = true ;
else if (list[mid] > item)
last = mid - 1;
else
first = mid + 1;
}//end while
if (found)
cerr << "The insert item is already in the list. "
<< "Duplicates are not allowed." << endl;
else
{
if (list[mid] < item)
mid++;
insertAt(mid, item);
}
}
}//end insertOrd
template <class elemType>
int orderedArrayListType<elemType>::binarySearch
(const elemType& item) const
{
int first = 0;
int last = length - 1;
int mid;
bool found = false ;
while (first <= last && !found)
{
mid = (first + last) / 2;
if (list[mid] == item)
found = true ;
else if (list[mid] > item)
last = mid - 1;
else
first = mid + 1;
}
if (found)
return mid;
else
return -1;
}//end binarySearch
template <class elemType>
orderedArrayListType<elemType>::orderedArrayListType(int size)
: arrayListType<elemType>(size)
{
}
#endif
please help me cant get an output out of dis code . . .
Sep 16, 2013 at 12:26pm UTC
Write a program to find the number of comparisons using the binary search and sequential search algorithms
Are you expected to write your own containers?
If not, you can use standard containers that are linear and binary searches (like vector and set), then pass in your own comparison thing with a counter on it, then display the counter.
It'll be much simpler.
Sep 16, 2013 at 1:13pm UTC
this is the full questions for the above pre-solution
Write a program to find the number of comparisons using the binary search and sequential search algorithms as follows:
Suppose list is an array of 1000 elements.
a. Use a random number generator to fill list.
b. Use any sorting algorithm to sort list. Alternatively, you can use the function insertOrd to initially insert all the elements in the list.
c. Search the list for some items, as follows:
i. Use the binary search algorithm to search the list. (You might need to modify the algorithm to count the number of comparisons.)
ii. Use the binary search algorithm to search the list, switching to a sequential search when the size of the search list reduces to less than 15. (Use the sequential search algorithm
for a sorted list.)
d. Print the number of comparisons for Steps c.i and c.ii. If the item is found in the list, then print its position.
Sep 16, 2013 at 2:35pm UTC
1 2 3 4 5 6
int main()
{
cout << "." << endl;
return 0;
}
... cant get an output out of dis code ...
Your main() does not instantiate/use any of your code.
Sep 17, 2013 at 12:07am UTC
Ok, that doesn't say anything about writing your own containers. It talks about a list of elements, but that's a generic term. Really, you need a container you can do a linear and binary search on; a vector.
The find() function does a linear search. If you use the version with a predicate, you can pass in a functor (an object that can be called like a function) that can keep count for you.
http://en.cppreference.com/w/cpp/algorithm/find
Similarly, binary_search() does a ... There's a version that takes a predicate that you treat in the same way.
http://en.cppreference.com/w/cpp/algorithm/binary_search
Topic archived. No new replies allowed.