1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
|
#ifndef SET_H
#define SET_H
// Set.h - an implementation of Set using Node and Set_iterator
using namespace std;
template <class T> class Set;
template <class T> class Set_iterator;
template <class T>
class Node {
public:
Node(): value(0), parent(0), leftChild(0), rightChild(0) { }
Node(const T & x, Node * p, Node * lc, Node * rc): value(x), parent(p), leftChild(lc), rightChild(rc) { }
// here copy constructor and assignment op don't make too much sense!
Node(const Node & n): value(n.value), parent(0), leftChild(0), rightChild(0) { }
Node & operator=(const Node & n) { value = n.value; return *this; }
~Node() { delete leftChild; delete rightChild; } // this is very recursive,
//delete also calls the destructor of the object it is deleting
void insert(Node<T> * newNode); // this is a helper func for Set::insert()
Node * find(const T & x);
Node * merge(Node<T> * left, Node<T> * right);
protected:
T value;
Node * parent;
Node * leftChild;
Node * rightChild;
friend class Set<T>;
friend class Set_iterator<T>;
};
template <class T>
void Node<T>::insert(Node<T> * newNode)
{
if(newNode->value <= value){
if(leftChild != 0){
leftChild->insert (newNode);
}
else{
newNode->parent = this;
leftChild = newNode;
}
}
else{
if(rightChild != 0){
rightChild->insert (newNode);
}
else{
newNode->parent = this;
rightChild = newNode;
}
}
}
template <class T>
Node<T> * Node<T>::find(const T & element)
{
if(element->value <= value){
if(leftChild != 0){
if(leftChild->value == element){;
return *this;
}
else{
return element;
}
}
else{
return element;
}
}
else{
if(rightChild != 0){
if(rightChild->value == element){
return *this;
}
else{
return element;
}
}
else{
return element;
}
}
return setIterator(this);
}
template <class T>
Node<T> * Node<T>::merge(Node<T> *left, Node<T> *right)
{
if(left == 0){
return right;
}
if(right == 0){
return left;
}
Node<T> * child = merge(left, right->leftChild);
child->parent = right;
right->leftChild = child;
return right;
}
template <class T>
class Set {
public:
typedef Set_iterator<T> iterator;
Set(): root(0), my_size(0) { }
// the big three
Set(const Set<T> & );
~Set() { delete root; }
Set operator=(const Set & );
bool empty() const { return root == 0; }
unsigned int size() const { return my_size; }
void insert(const T & newElement); // return an iterator to x if it already exists,
// otherwise insert and return an iterator to x
void erase(const iterator & current);
void erase(const T & x) { root = remove(root, x); }
unsigned int count(const T & x) const; // returns 1 or 0 because this is a set, not a multi-set
iterator find(const T & x) const;
iterator begin() const; // for in-order traversal
iterator end() const { return iterator(0); }
protected:
Node<T> * root;
unsigned int my_size;
Node<T> * remove(Node<T> *, const T &);
};
template <class T>
Set<T>::Set(const Set<T> & op)
{
root = 0;
for (iterator i = op.begin(); i != op.end(); ++i)
insert(*i);
}
template <class T>
Set<T> Set<T>::operator=(const Set<T> & op)
{
delete root;
root = 0;
for (iterator i = op.begin(); i != op.end(); ++i)
insert(*i);
return *this;
}
template <class T>
void Set<T>::insert(const T & newElement)
{
//do not insert if already in set
if (count(newElement) > 0){
return;
}
//create a new node
Node<T> * newNode = new Node<T> (newElement, 0, 0, 0);
if(root == 0){
root = newNode;
}
else{
root->insert (newNode);
}
}
template <class T>
void Set<T>::erase(const iterator & current)
{
}
template <class T>
unsigned int Set<T>::count(const T & x) const
{
iterator looking = begin();
int count = 0;
for( ; looking != end(); looking++){
count++;
}
return count;
}
template <class T>
typename Set<T>::iterator Set<T>::find(const T & element) const
{
}
template <class T>
typename Set<T>::iterator Set<T>::begin() const
{
return iterator(root);
}
template <class T>
Node<T> * Set<T>::remove(Node<T> * current, const T & testElement)
{
if(current != 0){
Node<T> * pa = current->parent;
if(testElement < current->value){
current->leftChild = remove(current->leftChild, testElement);
}
else if(current->value < testElement){
current->rightChild = remove(current->rightChild, testElement);
}
else {
Node<T> * result = current->merge(remove(current->leftChild, testElement), current->rightChild);
current->leftChild = current->rightChild = 0;
delete current;
if (result)
result->parent = pa;
return result;
}
}
}
template <class T>
class Set_iterator {
public:
Set_iterator(): current(0) { }
Set_iterator(Node<T> * newNode): current(newNode) { }
bool operator==(Set_iterator it) const { return current == it.current; }
bool operator!=(Set_iterator it) const { return current != it.current; }
Set_iterator & operator++(); // inorder traversal, pre-increment
Set_iterator operator++(int); // inorder traversal, post-increment
T & operator*() { return current->value; }
Set_iterator & operator=(Set_iterator<T> it) { current = it.current; return *this; }
protected:
Node<T> * current;
friend class Set<T>;
};
template <class T>
Set_iterator<T> & Set_iterator<T>::operator++()
{
if(current->rightChild){
current = current->rightChild;
while(current->leftChild){
current = current->leftChild;
}
}
else{
Node<T> * child = current;
current = current->parent;
while(current && current->rightChild == current){
child = current;
current = current->parent;
}
}
return *this;
}
template <class T>
Set_iterator<T> Set_iterator<T>::operator++(int)
{
Set_iterator<T> clone (*this);
operator++ ();
return clone;
}
#endif
|