Complex number problem

My complex class read only Real, and Imag is 0 after build and run
Z1 should be equal -> 0.209+0.117i
And i get only -> 0.209+0i
Any help about this ?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
  #include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <iostream>
#include <math.h>
#define Pi 3.1415
#include <iomanip>

using namespace std;

class Kompleks
{
public:

	Kompleks (double r=0, double i=0) : _Re(r),_Im(i)
	{}

	double Re() const
	{ return _Re; }

	double Im() const
	{ return _Im; }

	double Ro() const
	{return this->Moduo();}

	double Fi() const
	{
	if (Re())  return atan(Im()/Re());
	else return Im()<0  ? -Pi/2 : Pi/2;
	}

	double Moduo () const
	{
	return sqrt(Re()*Re()+Im()*Im());
	}

	Kompleks operator +(const Kompleks& c) const
	{
	return Kompleks(Re() + c.Re(), Im() + c.Im());
	}

	Kompleks operator -(const Kompleks& c) const
	{
	return Kompleks( Re() - c.Re(), Im() - c.Im() );
	}

	Kompleks operator *(const Kompleks& c) const
	{
	return Kompleks( Re() * c.Re() - Im() * c.Im(), Re() * c.Im() + Im() * c.Re());
	}

	Kompleks operator * (const double d) const
	{
	return Kompleks (Re()*d,Im()*d);
	}

	Kompleks operator /(const Kompleks& c) const
	{
	return Kompleks( (Re() * c.Re() + Im() * c.Im())/(c.Re() * c.Re() + c.Im() * c.Im())
	,(Im() * c.Re() - Re() * c.Im())/(c.Re() * c.Re() + c.Im() * c.Im()));
	}

	Kompleks operator ~() const
	{
	return Kompleks(Re() , -Im());
	}

	istream& Citaj (istream &ul)
	{
	char c, i;
	ul >> _Re >> c >> _Im >> i;
	if (c=='-')
		_Im=-_Im;
	return ul;
	}

	ostream& Pisi (ostream &izl) const
	{
	char c = Im()<0 ? '-' : '+';
	return izl <<Re() << c << abs(Im()) << 'i';
	}

private:
	double _Re;
	double _Im;

};

istream& operator >> (istream& str, Kompleks& c)
{ return c.Citaj(str);}

ostream& operator << (ostream& str, const Kompleks& c)
{ return c.Pisi(str); }
main ()
{

Kompleks Re(4.3,0);
Kompleks Xe(0,8.07);

Kompleks Snp(31500000,0);
Kompleks Sns(31500000,0);
Kompleks Snt(10500000,0);

Kompleks Vnp(110000,0);
Kompleks Vns(20000,0);
Kompleks Vnt(10000,0);

double Ukps=12.7;
double Ukpt=9.2l;
double Ukst=2.4;

Kompleks Pcups(131000,0);
Kompleks Pcupt(0,0);
Kompleks Pcust(0,0);

Kompleks Pfe(40000,0);

double Jfe=0.0004;

Kompleks Sn(1000000,0);

Kompleks V1n(20000,0);
Kompleks V2n(400,0);

double Uk=5;

Kompleks Pcu(8550,0);

Kompleks Pfet(2200,0);

Kompleks Ife(0.008,0);

double L4001=1;
double L4002=2;
double L4003=4;
double L4004=1;
double L4005=2.5;
double L4006=2;
double L4007=1;
double L4008=2;
double L4009=2;
double L4010=2;
klasa complex c++
Kompleks r(0.209,0);
Kompleks x(0,0.117);
Kompleks g(0,0);
Kompleks b(0,0.000116);

Kompleks Rks=r*1.4;

Kompleks r0(0.75,0);
Kompleks x0(0,0.112);

Kompleks Rksmin0=r0*1.4;

Kompleks g0(0,0);
Kompleks b0(0,0.0000696);


Kompleks Zps=((Vnp*Vnp)/Snp)*(Ukps/100);
Kompleks Zpt=((Vnp*Vnp)/Snt)*(Ukpt/100);
Kompleks Zst=((Vnp*Vnp)/Snt)*(Ukst/100);

Kompleks Zp=(Zps+Zpt-Zst)/2;
Kompleks Zs=(Zps-Zpt+Zst)/2;
Kompleks Zt=(Zpt-Zps+Zst)/2;

Kompleks Z1=(r+x)*L4001;


cout << "resenje=" << Z1 << endl;
return 0;
}
You use the C version of abs which only works on integers, so the imaginary part is converted to an integer. To solve this problem you should include <cmath> and/or use the function named fabs.

C abs:
http://en.cppreference.com/w/c/numeric/math/abs
http://en.cppreference.com/w/c/numeric/math/fabs

C++ abs:
http://en.cppreference.com/w/cpp/numeric/math/abs
http://en.cppreference.com/w/cpp/numeric/math/fabs
Last edited on
Thanks for your answer. It was very helpful :)
Topic archived. No new replies allowed.