1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
|
BOOL ReadByte(BYTE *resp)
{
BOOL bReturn = TRUE;
BYTE rx;
DWORD dwBytesTransferred=0;
if (ReadFile (hPort, &rx, 1, &dwBytesTransferred, 0)> 0)
{
if (dwBytesTransferred == 1)
{
*resp=rx;
bReturn = TRUE;
}
else bReturn = FALSE;
}
else bReturn = FALSE;
return bReturn;
}
BOOL ReadString(uint8_t *outstring, int *length)
{
BYTE data;
BYTE dataout[4096]={0};
int index = 0;
while(ReadByte(&data)== TRUE)
{
dataout[index++] = data;
}
memcpy(outstring, dataout, index);
*length = index;
return TRUE;
}
void ClosePort()
{
CloseHandle(hPort);
return;
}
typedef struct UM6_packet_struct
{
uint8_t Address;
uint8_t PT;
uint16_t Checksum;
uint8_t data_length;
uint8_t data[30];
} UM6_packet;
uint8_t parse_serial_data( uint8_t* rx_data, uint8_t rx_length, UM6_packet* packet )
{
uint8_t index;
if( rx_length < 7 )
{
return 1;
}
for( index = 0; index < (rx_length - 2); index++ )
{
if( rx_data[index] == 's' && rx_data[index+1] == 'n' && rx_data[index+2] == 'p' )
{
break;
}
}
uint8_t packet_index = index;
if( packet_index == (rx_length - 2) )
{
return 2;
}
if( (rx_length - packet_index) < 7 )
{
return 3;
}
uint8_t PT = rx_data[packet_index + 3];
uint8_t packet_has_data = (PT >> 7) & 0x01; // Check bit 7 (HAS_DATA)
uint8_t packet_is_batch = (PT >> 6) & 0x01; // Check bit 6 (IS_BATCH)
uint8_t batch_length = (PT >> 2) & 0x0F; // Extract the batch length (bits 2 through 5)
// Now the actual packet length
uint8_t data_length = 0;
if( packet_has_data )
{
if( packet_is_batch )
{
// Packet has data and is a batch. This means it contains ‘batch_length' registers, each
// of which has a length of 4 bytes
data_length = 4*batch_length;
}
else // Packet has data but is not a batch. This means it contains one register (4 bytes)
{
data_length = 4;
}
}
else // Packet has no data
{
data_length = 0;
}
// At this point, we know exactly how long the packet is. Now we can check to make sure
// we have enough data for the full packet.
if( (rx_length - packet_index) < (data_length + 5) )
{
return 3;
}
packet->Address = rx_data[packet_index + 4];
packet->PT = PT;
// Get the data bytes and compute the checksum all in one step
packet->data_length = data_length;
uint16_t computed_checksum = 's' + 'n' + 'p' + packet->PT + packet->Address;
for( index = 0; index < data_length; index++ )
{
// Copy the data into the packet structure’s data array
packet->data[index] = rx_data[packet_index + 5 + index];
// Add the new byte to the checksum
computed_checksum += packet->data[index];
}
// Now see if our computed checksum matches the received checksum
// First extract the checksum from the packet
uint16_t received_checksum = (rx_data[packet_index + 5 + data_length] << 8);
received_checksum |= rx_data[packet_index + 6 + data_length];
// Now check to see if they don’t match
if( received_checksum != computed_checksum )
{
return 4;
}
return 0;
}
void del()
{
//Checking for queue underflow
if (front == -1)
{
cout<<"\nQueue Underflow\n";
return;
}
//cout<<"\nElement deleted from queue is:"<<cqueue_arr[front]<<"\n";
if (front == rear) /* queue has only one element */
{
front = -1;
rear = -1;
}
else
if(front == MAX-1)
front = 0;
else
front = front + 1;
}/*End of del()*/
//Function to display the elements in the queue
void display()
{
char front_pos = front,rear_pos = rear;
//Checking whether the circular queue is empty or not
if (front == -1)
{
cout<<"\nQueue is empty\n";
return;
}
//Displaying the queue elements
// cout<<"\nQueue elements:\n";
if(front_pos <= rear_pos )
while(front_pos <= rear_pos)
{
cout<<cqueue_arr[front_pos];
//cout<<"\t";
front_pos++;
}
else
{
while(front_pos <= MAX-1)
{
cout<<cqueue_arr[front_pos];
//cout<<"\t";
front_pos++;
}
front_pos = 0;
/* while(front_pos <= rear_pos)
{
cout<<cqueue_arr[front_pos]<<"\t ";
//cout<<"\t";
front_pos++;
}*/
}/*End of else*/
//cout<<"\n";
}/*End of display() */
void insert(BYTE &added_item)
{
//Checking for overflow condition
if ((front == 0 && rear == MAX-1) || (front == rear +1))
{
cout<<"\nQueue Overflow \n";
return;
}
if (front == -1) /*If queue is empty */
{
front = 0;
rear = 0;
}
else
if (rear == MAX-1)/*rear is at last position of queue */
rear = 0;
else
rear = rear + 1;
cqueue_arr[rear] = added_item;
display();
//del();
}/*End of insert()*/
int main(void)
{
/*************************************/
//configuring serial port in COM1
hPort = ConfigureSerialPort(L"COM1");
if(hPort == NULL)
{
cout<<"Com port configuration failed\n";
return -1;
}
/*
uint8_t message[100];
int sizeofbuf = 100;
cout << "Enter your value \n";
cin>>message;
WriteString(message,sizeofbuf);
Sleep(10);
uint8_t buf[100];
ReadString(buf,&sizeofbuf);
cout<<buf;
*/
//*******************************************
//declare valriable for sending message to sensor
cout<<"Writing operation is done for Raw Gyro Z : ";
uint8_t tx_data[20];
tx_data[0] = 's';
tx_data[1] = 'n';
tx_data[2] = 'p';
tx_data[3] = 0x00; // Packet Type byte
tx_data[4] = 0x59; // Address of raw data from the Z axis accelerometer register
tx_data[5] = 0x01; // Checksum high byte
tx_data[6] = 0xFB;
//USART1_transmit( tx_data, 7 );
WriteString(tx_data,20);
Sleep (1000);
cout<<"Reading from the sensor raw data of Z axis accelerometer";
BYTE data;
uint8_t dataout[4096]={0};
int index = 0;
UM6_packet new_packet;
int *ACC_Z[5]={0};
try{
if(ReadByte(&data)== TRUE)
{
Sleep(100);
dataout[index++] = data;
//cout<<dataout<<"\t";
if(parse_serial_data( &data, 20, &new_packet ))
{
if( new_packet.Address == UM6_ACCEL_RAW_Z)
{
ACC_Z[] = new_packet.data[0];
ACC_Z[1] = new_packet.data[1];
ACC_Z[2] = new_packet.data[2];
ACC_Z[3] = new_packet.data[3];
ACC_Z[4] = new_packet.data[4];
cout<< ACC_Z;
}
}
}
}
catch (BYTE data1){
cout<<"Exception raised: "<<data1<<endl;
}
system("PAUSE");
ClosePort();
return 0;
}
|