1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
|
// Compile with:
//
// g++ -std=c++11 -O2 -Wall bardemo.cpp -o bardemo -lasound -lpthread
#include<alsa/asoundlib.h>
#include<fstream>
#include<iostream>
#include<string>
#include<chrono>
#include<thread>
#include"sys/sysinfo.h"
#include <future>
using namespace std;
/* Functions which get information to display.
Not essentially required for the question
asked but here if they might prove useful. */
static unsigned long long lastTotalUser, lastTotalUserLow, lastTotalSys, lastTotalIdle;
void init(){
FILE* file = fopen("/proc/stat", "r");
fscanf(file, "cpu %llu %llu %llu %llu", &lastTotalUser, &lastTotalUserLow,
&lastTotalSys, &lastTotalIdle);
fclose(file);
}
std::string cpuPercent(){
double percent;
long int intPercent;
std::string s;
FILE* file;
unsigned long long totalUser, totalUserLow, totalSys, totalIdle, total;
file = fopen("/proc/stat", "r");
fscanf(file, "cpu %llu %llu %llu %llu", &totalUser, &totalUserLow,
&totalSys, &totalIdle);
fclose(file);
if (totalUser < lastTotalUser || totalUserLow < lastTotalUserLow ||
totalSys < lastTotalSys || totalIdle < lastTotalIdle){
//Overflow detection. Just skip this value.
percent = -1.0;
}else{
total = (totalUser - lastTotalUser) + (totalUserLow - lastTotalUserLow) +
(totalSys - lastTotalSys);
percent = total * 100;
total += (totalIdle - lastTotalIdle);
percent /= total;
}
lastTotalUser = totalUser;
lastTotalUserLow = totalUserLow;
lastTotalSys = totalSys;
lastTotalIdle = totalIdle;
intPercent = percent;
s = to_string(intPercent);
// Stop overflow by making all numbers '100' if above 2 digits
return (s.length() > 2 ? "100" : s);
}
std::string exec(const char* cmd) {
std::array<char, 128> buffer;
std::string result;
std::shared_ptr<FILE> pipe(popen(cmd, "r"), pclose);
if (!pipe) throw std::runtime_error("popen() failed!");
while (!feof(pipe.get()))
if (fgets(buffer.data(), 128, pipe.get()) != nullptr){
result += buffer.data();
}
return result.substr(0, result.length() - 1);
}
std::string procs(void){
struct sysinfo s;
sysinfo(&s);
return to_string(s.procs);
}
std::string date_and_time(void){
static char date[48];
time_t now = time(0);
strftime(date, 48, "%a %b %d, %H:%M:%S", localtime(&now));
std::string charToStr (date);
return charToStr;
}
std::string get_vol(void)
{
int vol;
std::string volume;
snd_hctl_t *hctl;
snd_ctl_elem_id_t *id;
snd_ctl_elem_value_t *control;
// To find card and subdevice: /proc/asound/, aplay -L, amixer controls
snd_hctl_open(&hctl, "hw:0", 0);
snd_hctl_load(hctl);
snd_ctl_elem_id_alloca(&id);
snd_ctl_elem_id_set_interface(id, SND_CTL_ELEM_IFACE_MIXER);
// amixer controls
snd_ctl_elem_id_set_name(id, "Master Playback Volume");
snd_hctl_elem_t *elem = snd_hctl_find_elem(hctl, id);
snd_ctl_elem_value_alloca(&control);
snd_ctl_elem_value_set_id(control, id);
snd_hctl_elem_read(elem, control);
snd_hctl_close(hctl);
vol = (int)snd_ctl_elem_value_get_integer(control,0);
volume = to_string(vol*100/127);
return volume;
}
std::string get_mem_total() {
std::string info[] = {"MemTotal:", "MemFree:", "Buffers:", "Cached:"};
int intInfo[4];
std::string token;
std::ifstream file("/proc/meminfo");
while(file >> token)
{
for(int i = 0; i < 4; i++)
if(token == info[i]){
file >> intInfo[i];
if(i == 3)
return std::to_string((intInfo[0] - intInfo[1] - (intInfo[2] + intInfo[3])) / 1024);
}
}
return "Unable to grab info.";
}
void execFunc(const char * e, std::string &s, bool &done)
{
s = exec(e);
done = true;
}
int main(int argc, char* argv[])
{
init(); // Used for CPU func.
int mSec = 500; // How long between display updates?
bool tStarted = false; // Has the thread been started?
int sToUpdate = 60; // Seconds until threads update
if (argc > 1) mSec = atoi(argv[1]); // Take the value if given
// Commands which user would like to run as threads
static const char* const command[] = { "rssSub", "mailcheck", "weather" };
// Calculate num. of threads
size_t nThreads = (sizeof command / sizeof command[0]);
// Get thread stuff ready
std::thread myThreads[nThreads];
std::string funcStr[nThreads]; // The original string from the thread
std::string readyStr[nThreads]; // The string which will take a copy of funcStr which it completes
bool tReady[nThreads]; // A means of indicating the thread has ran and is OK to copy strings
// Prep timer which sleeps between checks
std::chrono::milliseconds timespan(mSec);
// To hold the final execution command
std::string sysStrCmd; // Gathers the command with easy to work with string, and...
const char * sysCharCmd; // ...gives it to system(), which takes a char const
// Timers required for functions to update at proper intervals
auto start_time = std::chrono::high_resolution_clock::now();
auto current_time = std::chrono::high_resolution_clock::now();
auto timeSince = std::chrono::duration_cast<std::chrono::seconds>(current_time - start_time).count();
while(1) // Loop while the definition of '1' remains true
{
current_time = std::chrono::high_resolution_clock::now();
timeSince = std::chrono::duration_cast<std::chrono::seconds>(current_time - start_time).count();
// Do the threads need to be updated?
if (!tStarted) {
for (unsigned int i = 0; i < nThreads; i++)
{
myThreads[i] = std::thread(&execFunc, ref(command[i]), std::ref(funcStr[i]), ref(tReady[i]));
myThreads[i].detach();
}
tStarted = true;
}else if (timeSince >= sToUpdate) {
// Reset clock as we've met our time to update
start_time = std::chrono::high_resolution_clock::now();
tStarted = 0;
}
// Keep checking to see if the threads are finished and update strings in realtime
for (unsigned int i = 0; i < nThreads; i++)
if (tReady[i]){ // Is the thread is done?
tReady[i] = 0; // Reset for now
readyStr[i] = funcStr[i]; // Finally, the string is copied
}
std::string sysStrCmd = "xsetroot -name \"C:" +
cpuPercent() + "% " +
get_mem_total() + "m " +
"P:" + procs() + " " +
"V:" + get_vol()+ "% " +
readyStr[0] + (readyStr[0] == "" ? "": " ") +
readyStr[1] + (readyStr[1] == "" ? "": " ") +
readyStr[2] + (readyStr[2] == "" ? "": " ") +
date_and_time() + "\"";
// system() takes a const char
sysCharCmd = sysStrCmd.c_str();
system(sysCharCmd);
// Sleep in an efficient manner
std::this_thread::sleep_for(timespan);
}
return 0;
}
|