1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
|
#include "ff++.hpp"
// #ifndef WITH_NO_INIT
// #include "ff++.hpp"
// #include "AFunction_ext.hpp"
// #endif
// using namespace std;
#include <set>
#include <vector>
#include <map>
#include <algorithm>
//#include "msh3.hpp"
// #include <iostream>
using namespace Fem2D;
// FreeFem glue
class WATERSHED_P1_Op : public E_F0mps
{
public:
Expression eTh,eff,eret;
static const int n_name_param = 1;
static basicAC_F0::name_and_type name_param[n_name_param];
Expression nargs[n_name_param];
public:
WATERSHED_P1_Op(const basicAC_F0 & args,Expression tth, Expression fff,Expression rrr)
: eTh(tth),eff(fff),eret(rrr)
{
args.SetNameParam(n_name_param,name_param,nargs);
}
AnyType operator()(Stack stack) const;
private:
template<typename T>
T arg(int i, Stack stack, T a) const {
return nargs[i]
? GetAny< T >( (*nargs[i])(stack) )
: a;
}
};
basicAC_F0::name_and_type WATERSHED_P1_Op::name_param[]= {
{ "eps", &typeid(double)}
};
// algorithm
typedef int triangle_t;
typedef int vertex_t;
typedef int color_t;
struct fat_vertex_t {
vertex_t vertex;
triangle_t triangle;
int edge;
fat_vertex_t(vertex_t v, triangle_t t, int e)
: vertex(v), triangle(t), edge(e) {}
friend bool operator<(fat_vertex_t const& a, fat_vertex_t const& b)
{ return a.vertex < b.vertex; }
friend bool operator==(fat_vertex_t const& a, fat_vertex_t const& b)
{ return a.vertex == b.vertex; }
};
typedef std::vector<fat_vertex_t> vertices_t;
typedef std::pair<fat_vertex_t, double> ver_val_t;
struct cmp_t {
bool operator()(ver_val_t const& t1, ver_val_t const& t2) const {
return t1.second < t2.second;
}
};
typedef std::priority_queue<ver_val_t, std::vector<ver_val_t>, cmp_t> queue_t;
typedef KNM<long> ret_type;
template<typename Func>
void for_each_triangle(Mesh const& Th, triangle_t const triangle0, int const edge0, Func func) {
int const vertex = Th(triangle0, edge0);
if( !func( triangle0 ) )
return;
int edge = edge0;
int triangle = triangle0;
for(;;) {
edge = (edge + 1) % 3;
if( Th(triangle, edge) == vertex )
edge = (edge + 1) % 3;
triangle = Th.ElementAdj( triangle, edge );
if( triangle == triangle0 )
return;
if( triangle < 0 )
break;
if( !func( triangle ) )
return;
}
triangle = triangle0;
edge = edge0;
for(;;) {
edge = (edge - 1) % 3;
if( Th(triangle, edge) == vertex )
edge = (edge - 1) % 3;
triangle = Th.ElementAdj( triangle, edge );
if( triangle == triangle0 )
return;
if( triangle < 0 )
break;
if( !func( triangle ) )
return;
}
}
template<typename Func>
struct for_each_neighbor_helper {
Func func;
Mesh const& Th;
bool operator()(triangle_t triangle) {
for(int e = 0; e < 3; ++e)
if(! func( Th(triangle, e), triangle, e ) )
return false;
return true;
}
};
template<typename Func>
void for_each_neighbor(Mesh const& Th, triangle_t const triangle0, int const edge0, Func func) {
for_each_neighbor_helper<Func> help = { func, Th };
// check adjacent triangles
for_each_triangle(Th, triangle0, edge0, help);
}
template<typename Cont>
void erase_unique(Cont& cont) {
std::sort(cont.begin(), cont.end());
cont.erase(
std::unique(cont.begin(), cont.end()),
cont.end()
);
}
struct maxima_helper {
KN<double> const& tff;
double& maxval;
bool& is_max;
bool operator()(vertex_t vertex, triangle_t triangle, int edge) const {
double val = tff[ vertex ];
if(val > maxval) {
is_max = false;
return false;
}
return true;
}
};
static void maxima(Mesh const& Th, KN<double> const& tff, vertices_t& vertices, double epsr)
{
const int nbt=Th.nt; // nombre de triangles
// loop over vertices
for(int it = 0; it < nbt; ++it) {
int maxiv = 0;
double maxval = tff[ Th(it,0) ];
int iv;
for(iv=1; iv < 3; ++iv) {
int i = Th(it,iv);
double val = tff[i];
if(val > maxval) {
maxiv = iv;
maxval = val;
}
}
iv = maxiv;
if(std::abs(maxval) < epsr)
continue;
bool is_max = true;
maxima_helper helper = { tff, maxval, is_max };
for_each_neighbor(Th, it, iv, helper);
if(!is_max)
continue;
// std::cout << "FOUND " << it << ' ' << maxiv << ' ' << Th(it, maxiv) << ' ' << maxval << std::endl;
vertices.push_back(fat_vertex_t( Th(it,maxiv), it, maxiv ));
}
erase_unique(vertices);
}
#if 0
static void maxima(Mesh const& Th, KN<double> const& tff, queue_t& roots, std::vector<color_t>& colors, double epsr)
{
const int nbt=Th.nt; // nombre de triangles
const int nbv=Th.nv; // nombre de vertices
enum pixel_type {
MAXIMUM,
PLATEAU,
NON_MAXIMUM
};
// the one that increments current_color
// shall push to roots
color_t current_color = 1;
std::vector<bool> visited ( nbv, false );
auto analyse_neighbors = [&](vertex_t const vertex0, triangle_t const triangle0, int edge0) {
pixel_type pxl = MAXIMUM;
for_each_neighbor(Th, triangle0, edge0,
[&](vertex_t vertex, triangle_t triangle, int edge) {
if( vertex == vertex0 )
return true;
if( tff[vertex] > tff[vertex0] ) {
pxl = NON_MAXIMUM;
return false;
}
if( tff[vertex] == tff[vertex0] )
pxl = PLATEAU;
return true;
});
return pxl;
};
auto analyse_plateau = [&](vertex_t const vertex0, triangle_t const triangle0, int edge0) {
colors[vertex0] = current_color;
// early exit
color_t new_label = current_color;
// do not forget marked nodes
std::deque<fat_vertex_t> queue;
queue.push_back({ vertex0, triangle0, edge0 });
auto it = queue.begin();
auto const end = queue.end();
for(; it != end; ++it ) {
fat_vertex_t const& vv = *it;
for_each_neighbor(Th, vv.triangle, vv.edge,
[&](vertex_t vertex, triangle_t triangle, int edge) {
if( colors[vertex] == -1 && tff[vertex] == tff[vertex0] ) {
colors[vertex] = current_color;
queue.push_back({ vertex, triangle, edge });
visited[vertex] = true;
}
else if( tff[vertex] > tff[vertex0] )
new_label = -1;
return true;
});
}
if( new_label == -1 )
for(fat_vertex_t const& vv : queue)
colors[vv.vertex] = -1;
else {
++current_color;
roots.push({ { vertex0, triangle0, edge0 }, tff[vertex0] });
}
};
// loop over vertices
for(triangle_t triangle = 0; triangle < nbt; ++triangle)
for(int edge = 0; edge < 3; ++edge) {
vertex_t vertex = Th( triangle, edge );
if( visited[vertex] )
continue;
pixel_type pxl = analyse_neighbors(vertex, triangle, edge);
if( pxl == MAXIMUM ) {
for_each_neighbor(Th, triangle, edge,
[&](vertex_t vertex2, int,int) {
ffassert( tff[vertex2] <= tff[vertex] );
return true;
});
colors[vertex] = current_color++;
roots.push({{ vertex, triangle, edge }, tff[vertex] });
}
// else if( pxl == PLATEAU )
// analyse_plateau(vertex, triangle, edge);
visited[vertex] = true;
}
ffassert( roots.size() == current_color-1 );
}
#endif
|