1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
|
// Another puzzler for chess buffs is the Eight Queens problem. Simply stated: Is it possible to place eight queens on an empty
// chess board so that no queen is "attacking" any other, i.e., no two queens are in the same row, the same column, or along the
// same diagonal? Use the thinking developed in Exercise 4.24 to formulate a heuristic for solving the Eight Queens problem. Run
// your program. (Hint: It is possible to assign a value to each square of the chess board indicating how many squares of an empty
// chess board are "eliminated" if a queen is placed in that square. Each of the corners would be assigned the value 22, as in Fig
// 4.31) Once these "elimination numbers" are placed in all 64 squares, an appropriate heuristic might be: Place the next queen in
// the square with the smallest elimination number. Why is this strategy intuitively appealing?
#include <iostream>
using std::cout;
using std::endl;
#include <iomanip>
using std::setw;
const int rows = 8;
const int columns = 8;
void placeQueens(int[][columns], int, int);
void printBoard(int[][columns], int, int);
bool moveToLowestEliminationNumber(int[][columns], int, int);
void clearRowColumnAndDiagonal(int[][columns], int, int, int, int);
void adjustValues(int[][columns], int, int);
void adjustValue(int[][columns], int&, int, int, int, int);
int main()
{
int board[rows][columns] = {{22, 21, 20, 19, 18, 17, 16, 22},
{22, 24, 24, 24, 24, 24, 24, 22},
{22, 24, 26, 26, 26, 26, 24, 22},
{22, 24, 26, 28, 28, 26, 24, 22},
{22, 24, 26, 28, 28, 26, 24, 22},
{22, 24, 26, 26, 26, 26, 24, 22},
{22, 24, 24, 24, 24, 24, 24, 22},
{22, 21, 20, 19, 18, 17, 16, 22}};
printBoard(board, rows, columns);
placeQueens(board, rows, columns);
printBoard(board, rows, columns);
return 0;
}
void placeQueens(int board[][columns], int rows, int columns)
{
bool moveMade;
bool end = false;
int numberOfQueens = 0;
while(!end)
{
moveMade = moveToLowestEliminationNumber(board, rows, columns);
if(moveMade)
{
numberOfQueens++;
if(numberOfQueens == 8)
{
end = true;
}
}
else
{
end = true;
}
}
}
bool moveToLowestEliminationNumber(int board[][columns], int rows, int columns)
{
int lowestValue = 28;
int lowestRowIndex = -1;
int lowestColumnIndex = -1;
for(int i = 0; i < rows; i++)
{
for(int j = 0; j < columns; j++)
{
int value = board[i][j];
if(value > 0 && value < lowestValue)
{
lowestValue = board[i][j];
lowestRowIndex = i;
lowestColumnIndex = j;
}
}
}
if(lowestRowIndex != -1)
{
board[lowestRowIndex][lowestColumnIndex] = -1;
clearRowColumnAndDiagonal(board, rows, columns, lowestRowIndex, lowestColumnIndex);
adjustValues(board, rows, columns);
return true;
}
return false;
}
void clearRowColumnAndDiagonal(int board[][columns], int rows, int columns, int currentRow, int currentColumn)
{
// clear row
for(int i = 0; i < columns; i++)
{
if(i != currentColumn)
{
board[currentRow][i] = 0;
}
}
// clear column
for(int i = 0; i < rows; i++)
{
if(i != currentRow)
{
board[i][currentColumn] = 0;
}
}
// diagonal left and up
for(int i = currentRow - 1, j = currentColumn - 1; i >= 0 && j >= 0; i--, j--)
{
board[i][j] = 0;
}
// diagonal right and up
for(int i = currentRow - 1, j = currentColumn + 1; i >= 0 && j < columns; i--, j++)
{
board[i][j] = 0;
}
// diagonal left and down
for(int i = currentRow + 1, j = currentColumn - 1; i < rows && j >= 0; i++, j--)
{
board[i][j] = 0;
}
// diagonal right and down
for(int i = currentRow + 1, j = currentColumn + 1; i < rows && j < columns; i++, j++)
{
board[i][j] = 0;
}
}
void adjustValues(int board[][columns], int rows, int columns)
{
for(int i = 0; i < rows; i++)
{
for(int j = 0; j < columns; j++)
{
if(board[i][j] > 0)
{
adjustValue(board, board[i][j], rows, columns, i, j);
}
}
}
}
void adjustValue(int board[][columns], int& value, int rows, int columns, int currentRow, int currentColumn)
{
int newValue = 0;
// adjust for row
for(int i = 0; i < columns; i++)
{
if(board[currentRow][i] > 0)
{
newValue++;
}
}
// adjust for columns
for(int i = 0; i < rows; i++)
{
if(board[i][currentColumn] > 0)
{
newValue++;
}
}
// diagonal left and up
for(int i = currentRow, j = currentColumn; i >= 0 && j >= 0; i--, j--)
{
if(board[i][j] > 0)
{
newValue++;
}
}
// diagonal right and up
for(int i = currentRow, j = currentColumn; i >= 0 && j < columns; i--, j++)
{
if(board[i][j] > 0)
{
newValue++;
}
}
// diagonal left and down
for(int i = currentRow, j = currentColumn; i < rows && j >= 0; i++, j--)
{
if(board[i][j] > 0)
{
newValue++;
}
}
// diagonal right and down
for(int i = currentRow, j = currentColumn; i < rows && j < columns; i++, j++)
{
if(board[i][j] > 0)
{
newValue++;
}
}
value = newValue;
}
void printBoard(int board[][columns], int rows, int columns)
{
for(int i = 0; i < rows; i++)
{
for(int j = 0; j < columns; j++)
{
cout << setw(2) << board[i][j] << ' ';
}
cout << endl;
}
}
|