1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
|
#include <iostream>
#include <fstream>
#include <cmath>
using namespace std;
// Define the class for binary sequence
class bin_seq;
// Define the class for word
class word
{
private:
int bit1, bit2, bit3, bit4, bit5, bit6, bit7, bit8, parity;
public:
word();
word(int u);
~word();
void Print();
bool check_parity_OK();
int DAC();
friend class bin_seq;
};
// Constructor for word that initialises its data
word::word()
{
bit1 = 0;
bit2 = 0;
bit3 = 0;
bit4 = 0;
bit5 = 0;
bit6 = 0;
bit7 = 0;
bit8 = 0;
parity = 0;
}
// Constructor for word that sets the values for the bits
word::word(int u)
{
// Clip voltage if it is outside the range
if (u > 127)
{
u = 127;
}
if (u < -128)
{
u = -128;
}
// Implement two's complement encoding
// First, implement the binary equivalent
int data = abs(u);
int i = 0;
int bit[] = {0, 0, 0, 0, 0, 0, 0, 0, 0};
while (data != 0)
{
bit[i] = data%2;
data = data/2;
i = i + 1;
}
if (u >= 0)
{
// Assign positive words their binary representation
bit1 = bit[0];
bit2 = bit[1];
bit3 = bit[2];
bit4 = bit[3];
bit5 = bit[4];
bit6 = bit[5];
bit7 = bit[6];
bit8 = bit[7];
}
if (u < 0)
{
// Assign negative words their two's complement
// First, invert the bits
// Invert bit 1
if (bit[0]==0)
bit1 = 1;
else
bit1 = 0;
//Invert bit2
if (bit[1]==0)
bit2 = 1;
else
bit2 = 0;
//Invert bit3
if (bit[2]==0)
bit3 = 1;
else
bit3 = 0;
//Invert bit4
if (bit[3]==0)
bit4 = 1;
else
bit4 = 0;
//Invert bit5
if (bit[4]==0)
bit5 = 1;
else
bit5 = 0;
//Invert bit6
if (bit[5]==0)
bit6 = 1;
else
bit6 = 0;
//Invert bit7
if (bit[6]==0)
bit7 = 1;
else
bit7 = 0;
//Invert bit8
if (bit[7]==0)
bit8 = 1;
else
bit8 = 0;
//Second, add one to the inverter binary word
//Add one to bit1
if ((bit1+1)==2)
bit1 = 0;
else
bit1 = 1;
//Add one to bit2, if required
if (bit1==0)
bit2 = bit2+1;
else
bit2 = bit2;
if (bit2==2)
bit2 = 0;
//Add one to bit3, if required
if ((bit1==0)&&(bit2==0))
bit3 = bit3+1;
else
bit3 = bit3;
if (bit3==2)
bit3 = 0;
//Add one to bit4, if required
if ((bit1==0)&&(bit2==0)&&(bit3==0))
bit4 = bit4+1;
else
bit4 = bit4;
if (bit4==2)
bit4 = 0;
//Add one to bit5, if required
if ((bit1==0)&&(bit2==0)&&(bit3==0)&&(bit4==0))
bit5 = bit5+1;
else
bit5 = bit5;
if (bit5==2)
bit5 = 0;
//Add one to bit6, if required
if ((bit1==0)&&(bit2==0)&&(bit3==0)&&(bit4==0)&&(bit5==0))
bit6 = bit6+1;
else
bit6 = bit6;
if (bit6==2)
bit6 = 0;
//Add one to bit7, if required
if ((bit1==0)&&(bit2==0)&&(bit3==0)&&(bit4==0)&&(bit5==0)&&(bit6==0))
bit7 = bit7+1;
else
bit7 = bit7;
if (bit7==2)
bit7 = 0;
//Add one to bit8, if required
if ((bit1==0)&&(bit2==0)&&(bit3==0)&&(bit4==0)&&(bit5==0)&&(bit6==0)&&(bit7==0))
bit8 = bit8+1;
else
bit8 = bit8;
if (bit7==2)
bit8 = 0;
}
// Set Parity bit
if ((bit1+bit2+bit3+bit4+bit5+bit6+bit7+bit8)%2 == 0)
parity = 0;
else
parity = 1;
}
// Destructor for word that sets all its bits to zero
word::~word()
{
bit1 = 0;
bit2 = 0;
bit3 = 0;
bit4 = 0;
bit5 = 0;
bit6 = 0;
bit7 = 0;
bit8 = 0;
parity = 0;
}
// Define a print function to display binary sequence
void word::Print()
{
cout << "(" << parity << bit8 << bit7 << bit6 << bit5 << bit4 << bit3 << bit2 << bit1 << ")" << endl;
}
// Define the Check Parity Bit Function
bool word::check_parity_OK()
{
bool answer;
if ((parity==0)&&(bit1+bit2+bit3+bit4+bit5+bit6+bit7+bit8)%2 == 0)
{
answer = true;
}
if ((parity==0)&&(bit1+bit2+bit3+bit4+bit5+bit6+bit7+bit8)%2 != 0)
{
answer = false;
}
if ((parity==1)&&(bit1+bit2+bit3+bit4+bit5+bit6+bit7+bit8)%2 != 0)
{
answer = true;
}
if ((parity==1)&&(bit1+bit2+bit3+bit4+bit5+bit6+bit7+bit8)%2 == 0)
{
answer = false;
}
if (answer == true)
cout << "Parity OK?: " << "Yes" << endl;
else
cout << "Parity OK?: " << "No" << endl;
return answer;
}
// Define the Digital to Analogue Converter Function
int word::DAC()
{
int value;
if (bit8 == 0)
{
cout << "The word is a positive integer" << endl;
//Calculate the decimal equivalent of the binary word
value = (bit8*pow(2.0,7.0))+(bit7*pow(2.0,6.0))+(bit6*pow(2.0,5.0))+(bit5*pow(2.0,4.0))+(bit4*pow(2.0,3.0))+(bit3*pow(2.0,2.0))+(bit2*pow(2.0,1.0))+(bit1*pow(2.0,0.0));
}
else
{
cout << "The word is a negative integer" << endl;
//Convert to the decimal equivalent of the binary word
//First, invert the bits
//Invert bit1
if (bit1==0)
bit1 = 1;
else
bit1 = 0;
//Invert bit2
if (bit2==0)
bit2 = 1;
else
bit2 = 0;
//Invert bit3
if (bit3==0)
bit3 = 1;
else
bit3 = 0;
//Invert bit4
if (bit4==0)
bit4 = 1;
else
bit4 = 0;
//Invert bit5
if (bit5==0)
bit5 = 1;
else
bit5 = 0;
//Invert bit6
if (bit6==0)
bit6 = 1;
else
bit6 = 0;
//Invert bit7
if (bit7==0)
bit7 = 1;
else
bit7 = 0;
//Invert bit8
if (bit8==0)
bit8 = 1;
else
bit8 = 0;
//Second, Add one to the inverted binary word
//Add one to bit1
if ((bit1+1)==2)
bit1 = 0;
else
bit1 = 1;
//Add one to bit2, if required
if (bit1==0)
bit2 = bit2+1;
else
bit2 = bit2;
if (bit2==2)
bit2 = 0;
//Add one to bit3, if required
if ((bit1==0)&&(bit2==0))
bit3 = bit3+1;
else
bit3 = bit3;
if (bit3==2)
bit3 = 0;
//Add one to bit4, if required
if ((bit1==0)&&(bit2==0)&&(bit3==0))
bit4 = bit4+1;
else
bit4 = bit4;
if (bit4==2)
bit4 = 0;
//Add one to bit5, if required
if ((bit1==0)&&(bit2==0)&&(bit3==0)&&(bit4==0))
bit5 = bit5+1;
else
bit5 = bit5;
if (bit5==2)
bit5 = 0;
//Add one to bit6, if required
if ((bit1==0)&&(bit2==0)&&(bit3==0)&&(bit4==0)&&(bit5==0))
bit6 = bit6+1;
else
bit6 = bit6;
if (bit6==2)
bit6 = 0;
//Add one to bit7, if required
if ((bit1==0)&&(bit2==0)&&(bit3==0)&&(bit4==0)&&(bit5==0)&&(bit6==0))
bit7 = bit7+1;
else
bit7 = bit7;
if (bit7==2)
bit7 = 0;
//Add one to bit8, if required
if ((bit1==0)&&(bit2==0)&&(bit3==0)&&(bit4==0)&&(bit5==0)&&(bit6==0)&&(bit7==0))
bit8 = bit8+1;
else
bit8 = bit8;
if (bit7==2)
bit8 = 0;
//Calculate the decimal equivalent of the binary word
value = -1*((bit8*pow(2.0,7.0))+(bit7*pow(2.0,6.0))+(bit6*pow(2.0,5.0))+(bit5*pow(2.0,4.0))+(bit4*pow(2.0,3.0))+(bit3*pow(2.0,2.0))+(bit2*pow(2.0,1.0))+(bit1*pow(2.0,0.0)));
}
return value;
}
// Define the class for Binary Sequence
class bin_seq
{
private:
int bits_for_word;
public:
bin_seq();
~bin_seq();
friend bin_seq get_all_bits();
};
bin_seq::bin_seq()
{
}
// Define the class for message
class message
{
private:
int a_word;
public:
message(int *words);
message();
~message();
bin_seq get_all_bits();
};
message::message(int *words)
{
}
int main ()
{
int ans1 = 112;
int ans2 = -75;
bool logic1, logic2;
int result1, result2;
word voltage;
voltage.Print();
word check1(ans1);
check1.Print();
logic1 = check1.check_parity_OK();
//cout << logic1 << endl;
result1 = check1.DAC();
cout << result1 << endl;
cout << endl;
word check2(ans2);
check2.Print();
logic2 = check2.check_parity_OK();
//cout << logic2 << endl;
result2 = check2.DAC();
cout << result2 << endl;
cin.sync();
cin.get();
return 0;
}
|