1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
|
public class Polynomial {
private int[] coef; // coefficients
private int deg; // degree of polynomial (0 for the zero polynomial)
// a * x^b
public Polynomial(int a, int b) {
coef = new int[b+1];
coef[b] = a;
deg = degree();
}
// return the degree of this polynomial (0 for the zero polynomial)
public int degree() {
int d = 0;
for (int i = 0; i < coef.length; i++)
if (coef[i] != 0) d = i;
return d;
}
// return c = a + b
public Polynomial plus(Polynomial b) {
Polynomial a = this;
Polynomial c = new Polynomial(0, Math.max(a.deg, b.deg));
for (int i = 0; i <= a.deg; i++) c.coef[i] += a.coef[i];
for (int i = 0; i <= b.deg; i++) c.coef[i] += b.coef[i];
c.deg = c.degree();
return c;
}
// return (a - b)
public Polynomial minus(Polynomial b) {
Polynomial a = this;
Polynomial c = new Polynomial(0, Math.max(a.deg, b.deg));
for (int i = 0; i <= a.deg; i++) c.coef[i] += a.coef[i];
for (int i = 0; i <= b.deg; i++) c.coef[i] -= b.coef[i];
c.deg = c.degree();
return c;
}
// return (a * b)
public Polynomial times(Polynomial b) {
Polynomial a = this;
Polynomial c = new Polynomial(0, a.deg + b.deg);
for (int i = 0; i <= a.deg; i++)
for (int j = 0; j <= b.deg; j++)
c.coef[i+j] += (a.coef[i] * b.coef[j]);
c.deg = c.degree();
return c;
}
// return a(b(x)) - compute using Horner's method
public Polynomial compose(Polynomial b) {
Polynomial a = this;
Polynomial c = new Polynomial(0, 0);
for (int i = a.deg; i >= 0; i--) {
Polynomial term = new Polynomial(a.coef[i], 0);
c = term.plus(b.times(c));
}
return c;
}
// do a and b represent the same polynomial?
public boolean eq(Polynomial b) {
Polynomial a = this;
if (a.deg != b.deg) return false;
for (int i = a.deg; i >= 0; i--)
if (a.coef[i] != b.coef[i]) return false;
return true;
}
// use Horner's method to compute and return the polynomial evaluated at x
public int evaluate(int x) {
int p = 0;
for (int i = deg; i >= 0; i--)
p = coef[i] + (x * p);
return p;
}
// differentiate this polynomial and return it
public Polynomial differentiate() {
if (deg == 0) return new Polynomial(0, 0);
Polynomial deriv = new Polynomial(0, deg - 1);
deriv.deg = deg - 1;
for (int i = 0; i < deg; i++)
deriv.coef[i] = (i + 1) * coef[i + 1];
return deriv;
}
// convert to string representation
public String toString() {
if (deg == 0) return "" + coef[0];
if (deg == 1) return coef[1] + "x + " + coef[0];
String s = coef[deg] + "x^" + deg;
for (int i = deg-1; i >= 0; i--) {
if (coef[i] == 0) continue;
else if (coef[i] > 0) s = s + " + " + ( coef[i]);
else if (coef[i] < 0) s = s + " - " + (-coef[i]);
if (i == 1) s = s + "x";
else if (i > 1) s = s + "x^" + i;
}
return s;
}
// test client
public static void main(String[] args) {
Polynomial zero = new Polynomial(0, 0);
Polynomial p1 = new Polynomial(4, 3);
Polynomial p2 = new Polynomial(3, 2);
Polynomial p3 = new Polynomial(1, 0);
Polynomial p4 = new Polynomial(2, 1);
Polynomial p = p1.plus(p2).plus(p3).plus(p4); // 4x^3 + 3x^2 + 1
Polynomial q1 = new Polynomial(3, 2);
Polynomial q2 = new Polynomial(5, 0);
Polynomial q = q1.plus(q2); // 3x^2 + 5
Polynomial r = p.plus(q);
Polynomial s = p.times(q);
Polynomial t = p.compose(q);
System.out.println("zero(x) = " + zero);
System.out.println("p(x) = " + p);
System.out.println("q(x) = " + q);
System.out.println("p(x) + q(x) = " + r);
System.out.println("p(x) * q(x) = " + s);
System.out.println("p(q(x)) = " + t);
System.out.println("0 - p(x) = " + zero.minus(p));
System.out.println("p(3) = " + p.evaluate(3));
System.out.println("p'(x) = " + p.differentiate());
System.out.println("p''(x) = " + p.differentiate().differentiate());
}
}
|