1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
|
//Binary Search Tree Program
#include <iostream>
#include <cstdlib>
#include <string>
using namespace std;
class Map
{
private:
struct tree_node
{
tree_node* left;
tree_node* right;
double data;
char * key;
};
tree_node* root;
public:
Map()
{
root = NULL;
}
/*Map(char * key, double val)
{
root->key = key;
root->data = val;
root->left = NULL;
root->right = NULL;
}*/
bool isEmpty() const { return root==NULL; }
void print_inorder();
void inorder(tree_node*);
void print_preorder();
void preorder(tree_node*);
void print_postorder();
void postorder(tree_node*);
void find(char * ch);
int print_count();
int count(tree_node * t);
//void clear_o();
//void clear_c(tree_node*p);
void print_s(tree_node ** p);
void insert(char * ch, double d);
void remove(char * dkey);
};
// Smaller elements go left
// larger elements go right
void Map::find(char * ch)
{
//Find code
}
void Map::insert(char * ch, double val)
{
struct tree_node *curr,*parent;
if(root == NULL)
{
root = (struct tree_node *) malloc(sizeof(struct tree_node)); /* insert the new node as root node*/
if(root == NULL)
{
printf("Cannot allocate\n");
exit(0);
}
root->key = ch;
root->data = val;
root->left=root->right=NULL;
}
else
{
curr = root;
/* traverse the tree to get a pointer to that node whose child will be the newly created node*/
while(curr != NULL)
{
parent = curr;
if(strcmp(curr ->key, ch)<0)
curr = curr->left;
else
curr = curr->right;
}
if(strcmp(parent->key,ch)<0)
{
parent->left = (struct tree_node*)malloc(sizeof(struct tree_node));/*inserts the newly created node as left child*/
parent = parent->left;
if(parent == NULL)
{
printf("Cannot allocate\n");
exit(0);
}
parent->key = ch;
parent->data = val;
parent->left=parent->right = NULL;
}
else
{
parent->right = (struct tree_node*)malloc(sizeof(struct tree_node));/*inserts the newly created node
as left child*/
parent = parent->right;
if(parent == NULL)
{
printf("Cannot allocate\n");
exit(0);
}
parent->key = ch;
parent->data = val;
parent->left=parent->right = NULL;
}
}
}
void Map::remove(char * dkey)
{
//Locate the element
bool found = false;
if(isEmpty())
{
cout<<" This Tree is empty! "<<endl;
return;
}
tree_node * temp;
tree_node* curr;
tree_node* parent;
curr = root;
while(curr)
{
if(strcmp(curr->key,dkey)==0)
{
found = true;
break;
}
else
{
parent = curr;
if(strcmp(curr->key, dkey)<0)
curr = curr->left;
else
curr = curr->right;
}
}
if(!found)
{
cout<<" Data not found! "<<endl;
return;
}
// 3 cases :
// 1. We're removing a leaf node
// 2. We're removing a node with a single child
// 3. we're removing a node with 2 children
/* this code is for deleting node having both children */
if( curr->left != NULL && curr->right != NULL)
{
/* this code is for deleting root node with both children*/
if( curr == root)
{
temp = curr->left;
parent = curr->right;
root = temp;
while(temp->right != NULL)
temp = temp->right;
temp->right=parent;
delete curr;
root=NULL;
return;
}
if(parent->left == curr)
{
temp = curr->left;
parent->left = curr->left;
while(temp->right != NULL)
temp = temp->right;
temp->right=curr->right;
curr->left=NULL;
curr->right=NULL;
}
else
{
temp = curr->right;
parent->right = curr->right;
while(temp->left != NULL)
temp = temp->left;
temp->left=curr->left;
curr->left=NULL;
curr->right=NULL;
}
delete curr;
return;
}
/* this code is for deleting a node with one child*/
if(curr->left == NULL && curr->right != NULL)
{
if( curr == root)/* this code is for deleting root node with right child*/
{
temp = curr->left;
parent = curr->right;
root = temp;
while(temp->right != NULL)
temp = temp->right;
temp->right=parent;
root=NULL;
delete curr;
return;
}
if(parent->left == curr)
parent->left = curr->right;
else
parent->right = curr->right;
curr->right = NULL;
delete curr;
return;
}
if(curr->left != NULL && curr->right == NULL)
{
if( curr == root)/* this code is for deleting root node with left child*/
{
temp = curr->left;
parent = curr->right;
root = temp;
while(temp->right != NULL)
temp = temp->right;
temp->right=parent;
delete curr;
root=NULL;
return;
}
if(parent->left == curr)
parent->left = curr->left;
else
parent->right = curr->left;
curr->left = NULL;
return;
}
//We're looking at a leaf node
if( curr->left == NULL && curr->right == NULL)
{
if(curr == root)/* this code is for deleting root node with no children*/
{
delete curr;
root = NULL;
return;
}
if(parent->left == curr)
parent->left = NULL;
else
parent->right = NULL;
delete curr;
return;
}
}
int Map::print_count(){ //count code }
int Map::count(tree_node * t){//count code}
void Map::print_preorder(){//print_preorder code}
void Map::preorder(tree_node* p){//print_preorder code}
void Map::print_postorder(){//print_postorder}
void Map::postorder(tree_node* p){//print_postorder}
void Map::print_inorder(){//print_inorder}
void Map::inorder(tree_node* p){print_inorder}
int main()
{
Map salary;
string temp, ftarget, dtarget;
int ch,tmp,tmp1,size,c;
double data;
while(1)
{
cout<<endl<<endl;
cout<<" Binary Search Tree Operations "<<endl;
cout<<" ----------------------------- "<<endl;
cout<<" 1. Insertion/Creation "<<endl;
cout<<" 2. Print Inorder "<<endl;
cout<<" 3. Print Preorder "<<endl;
cout<<" 4. Print Postorder "<<endl;
cout<<" 5. Find "<<endl;
cout<<" 6. Removal "<<endl;
cout<<" 7. Count of Elements "<<endl;
cout<<" 8. Clear "<<endl;
//cout<<" 6. Exit "<<endl;
cout<<" Enter your choice : ";
cin>>ch;
char * pch;
switch(ch)
{
case 1 : cout<<" Enter key: ";
cin>>temp;
pch = (char *) malloc(sizeof(char)*temp.size());
strcpy(pch, temp.c_str());
cout << " Enter data: ";
cin >> data;
salary.insert(pch,data); break;
case 2 : cout<<endl;
cout<<" In-Order Traversal "<<endl;
cout<<" -------------------"<<endl;
salary.print_inorder(); break;
case 3 : cout<<endl;
cout<<" Pre-Order Traversal "<<endl;
cout<<" -------------------"<<endl;
salary.print_preorder(); break;
case 4 : //Post-Order Traversal
break;
case 5: if(salary.isEmpty())
cout<<"\n This Tree is empty! "<<endl;
else
{
cout << "Enter key: ";
cin >> temp;
pch = (char *) malloc(sizeof(char)*temp.size()); strcpy(pch, temp.c_str());
salary.find(pch);
} break;
case 6 : if(salary.isEmpty())
cout<<"\n This Tree is empty! "<<endl;
else
{ cout<<" Enter key to be deleted : ";
cin >> temp;
pch = (char *) malloc(sizeof(char)*temp.size()); strcpy(pch, temp.c_str());
salary.remove(pch);
}
break;
case 7: if(salary.isEmpty())
cout<<"\n This Tree is empty! "<<endl;
else
{
c = salary.print_count();
cout << "\nThere are " << c << " elements. \n";
}
break;
/* case 8: salary.clear_o();
break;*/
}
}
}
|