1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
|
#include <deque>
#include <iostream>
#include <tuple>
#include <unordered_set>
#include <vector>
struct State;
struct Transition {
char symbol;
State *successor;
};
struct State {
std::vector<State *> epsilon_transitions;
std::vector<Transition> transitions;
std::unordered_set<std::string> visited_strings;
};
struct Automaton {
State *initial_state;
State *final_state;
};
Automaton Eps() {
Automaton c;
c.initial_state = c.final_state = new State;
return c;
}
Automaton Sym(char symbol) {
Automaton c;
c.initial_state = new State;
c.final_state = new State;
c.initial_state->transitions.push_back({symbol, c.final_state});
return c;
}
Automaton Star(Automaton a) {
Automaton c;
c.initial_state = c.final_state = new State;
c.final_state->epsilon_transitions.push_back(a.initial_state);
a.final_state->epsilon_transitions.push_back(c.final_state);
return c;
}
Automaton Cat(Automaton a, Automaton b) {
Automaton c;
c.initial_state = a.initial_state;
c.final_state = b.final_state;
a.final_state->epsilon_transitions.push_back(b.initial_state);
return c;
}
Automaton Alt(Automaton a, Automaton b) {
Automaton c;
c.initial_state = new State;
c.final_state = new State;
c.initial_state->epsilon_transitions.push_back(a.initial_state);
c.initial_state->epsilon_transitions.push_back(b.initial_state);
a.final_state->epsilon_transitions.push_back(c.final_state);
b.final_state->epsilon_transitions.push_back(c.final_state);
return c;
}
void Enumerate(Automaton a, std::size_t size_limit = 4) // Kleene-Star operator, manages limited size to avoid infinity
{
std::deque<std::pair<State *, std::string>> queue = {
{a.initial_state, std::string()}};
do {
auto state = queue.front().first;
auto string = queue.front().second;
if (string.size() > size_limit) {
std::cout << "...\n";
break;
}
queue.pop_front();
if (!state->visited_strings.insert(string).second) {
continue;
}
if (state == a.final_state) {
std::cout << "\"" << string << "\"\n";
}
for (State *successor : state->epsilon_transitions) {
queue.push_front({successor, string});
}
for (auto transition : state->transitions) {
auto symbol = transition.symbol;
auto successor = transition.successor;
queue.push_back({successor, string + std::string(1, symbol)});
}
} while (!queue.empty());
std::cout << "\n";
}
#include <cctype>
#include <cstdio>
#include <istream>
#include <sstream>
char Peek(std::istream &input) {
input >> std::ws;
return input.peek();
}
bool Match(std::istream &input, char c) {
if (Peek(input) == c) {
input.get();
return true;
}
return false;
}
bool ParseSymbol(std::istream &input, char& result) {
if (std::isalpha(Peek(input))) {
result = input.get();
return true;
}
return false;
}
bool Parse(std::istream &input, Automaton& result);
bool ParsePrimitive(std::istream &input, Automaton& result) {
char symbol;
if (ParseSymbol(input, symbol)) {
result = Sym(symbol);
return true;
}
if (Match(input, '(')) {
Automaton a;
if (Parse(input, a)) {
if (Match(input, ')')) {
result = a;
return true;
}
}
}
return false;
}
bool ParseFactor(std::istream &input, Automaton& result) {
Automaton a;
if (ParsePrimitive(input, a)) {
if (Match(input, '*')) {
result = Star(a);
return true;
}
result = a;
return true;
}
return false;
}
bool ParseTerm(std::istream &input, Automaton& result) {
Automaton a;
if (ParseFactor(input, a)) {
while (Match(input, '.')) {
Automaton b;
if (ParseFactor(input, b)) {
a = Cat(a, b);
} else {
return false;
}
}
result = a;
return true;
}
return false;
}
bool Parse(std::istream &input, Automaton& result) {
Automaton a;
if (ParseTerm(input, a)) {
while (Match(input, '|')) {
Automaton b;
if (ParseTerm(input, b)) {
a = Alt(a, b);
} else {
return false;
}
}
result = a;
return true;
}
return false;
}
bool Parse(const std::string &input, Automaton& result) {
std::stringstream stream(input);
Automaton a;
if (Parse(stream, a)) {
if (Peek(stream) == EOF) {
result = a;
return true;
}
}
return false;
}
int main() {
// Parse parameters won't allow number chars, how so?
Automaton result;
if (Parse("a", result)) { Enumerate(result); } else std::cout << "Failed to parse\n";
if (Parse("a|b", result)) { Enumerate(result); } else std::cout << "Failed to parse\n";
if (Parse("a.b", result)) { Enumerate(result); } else std::cout << "Failed to parse\n";
if (Parse("(a|b).c", result)) { Enumerate(result); } else std::cout << "Failed to parse\n";
if (Parse("(c|d).(a|b)", result)) { Enumerate(result); } else std::cout << "Failed to parse\n";
if (Parse("a*", result)) { Enumerate(result); } else std::cout << "Failed to parse\n";
if (Parse("(a|b)*", result)) { Enumerate(result); } else std::cout << "Failed to parse\n";
}
|