1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
|
#ifndef MY_AVL_TREE_H
#define MY_AVL_TREE_H
#include "dsexceptions.h"
#include <algorithm>
#include <iostream>
using namespace std;
template <typename Comparable>
class AvlTree
{
public:
AvlTree( ) : root{ nullptr }
{ }
AvlTree( const AvlTree & rhs ) : root{ nullptr }
{
root = clone( rhs.root );
}
AvlTree( AvlTree && rhs ) : root{ rhs.root }
{
rhs.root = nullptr;
}
~AvlTree( )
{
makeEmpty( );
}
/**
* Deep copy.
*/
AvlTree & operator=( const AvlTree & rhs )
{
AvlTree copy = rhs;
std::swap( *this, copy );
return *this;
}
/**
* Move.
*/
AvlTree & operator=( AvlTree && rhs )
{
std::swap( root, rhs.root );
return *this;
}
/**
* Find the smallest item in the tree.
* Throw UnderflowException if empty.
*/
const Comparable & findMin( ) const
{
if( isEmpty( ) )
throw UnderflowException{ };
return findMin( root )->element;
}
/**
* Find the largest item in the tree.
* Throw UnderflowException if empty.
*/
const Comparable & findMax( ) const
{
if( isEmpty( ) )
throw UnderflowException{ };
return findMax( root )->element;
}
/**
* Returns true if x is found in the tree.
*/
bool contains( const Comparable & x ) const
{
return contains( x, root );
}
/**
* Test if the tree is logically empty.
* Return true if empty, false otherwise.
*/
bool isEmpty( ) const
{
return root == nullptr;
}
/**
* Print the tree contents in sorted order.
*/
void printTree( ) const
{
if( isEmpty( ) )
cout << "Empty tree" << endl;
else
printTree( root );
}
/**
* Insert x into the tree; duplicates are ignored.
*/
void insert( const Comparable & x )
{
insert( x, root );
}
/**
* Insert x into the tree; duplicates are ignored.
*/
void insert( Comparable && x )
{
insert( std::move( x ), root );
}
/**
* Remove x from the tree. Nothing is done if x is not found.
*/
void remove( const Comparable & x )
{
remove( x, root );
}
//MY CODE
void beginOfPrintTreeVisual()
{
printTreeVisual( root, 0 );
}
//END OF MY CODE
private:
struct AvlNode
{
Comparable element;
AvlNode *left;
AvlNode *right;
int height;
AvlNode( const Comparable & ele, AvlNode *lt, AvlNode *rt, int h = 0 )
: element{ ele }, left{ lt }, right{ rt }, height{ h } { }
AvlNode( Comparable && ele, AvlNode *lt, AvlNode *rt, int h = 0 )
: element{ std::move( ele ) }, left{ lt }, right{ rt }, height{ h } { }
};
AvlNode *root;
/**
* Internal method to insert into a subtree.
* x is the item to insert.
* t is the node that roots the subtree.
* Set the new root of the subtree.
*/
void insert( const Comparable & x, AvlNode * & t )
{
if( t == nullptr )
t = new AvlNode{ x, nullptr, nullptr };
else if( x < t->element )
insert( x, t->left );
else if( t->element < x )
insert( x, t->right );
balance( t );
}
/**
* Internal method to insert into a subtree.
* x is the item to insert.
* t is the node that roots the subtree.
* Set the new root of the subtree.
*/
void insert( Comparable && x, AvlNode * & t )
{
if( t == nullptr )
t = new AvlNode{ std::move( x ), nullptr, nullptr };
else if( x < t->element )
insert( std::move( x ), t->left );
else if( t->element < x )
insert( std::move( x ), t->right );
balance( t );
}
static const int ALLOWED_IMBALANCE = 1;
// Assume t is balanced or within one of being balanced
void balance( AvlNode * & t )
{
if( t == nullptr )
return;
if( height( t->left ) - height( t->right ) > ALLOWED_IMBALANCE )
if( height( t->left->left ) >= height( t->left->right ) )
rotateWithLeftChild( t );
else
doubleWithLeftChild( t );
else
if( height( t->right ) - height( t->left ) > ALLOWED_IMBALANCE )
if( height( t->right->right ) >= height( t->right->left ) )
rotateWithRightChild( t );
else
doubleWithRightChild( t );
t->height = max( height( t->left ), height( t->right ) ) + 1;
}
/**
* Internal method to test if an item is in a subtree.
* x is item to search for.
* t is the node that roots the tree.
*/
bool contains( const Comparable & x, AvlNode *t ) const
{
if( t == nullptr )
return false;
else if( x < t->element )
return contains( x, t->left );
else if( t->element < x )
return contains( x, t->right );
else
return true; // Match
}
/**
* Internal method to make subtree empty.
*/
void makeEmpty( AvlNode * & t )
{
std::cout << "Entered makeEmpty( AvlNode * & t) function" << std::endl;
if( t != nullptr )
{
makeEmpty( t->left );
makeEmpty( t->right );
delete t;
}
t = nullptr;
}
/**
* Internal method to print a subtree rooted at t in sorted order.
*/
void printTree( AvlNode *t ) const
{
if( t != nullptr )
{
printTree( t->left );
cout << t->element << endl;
printTree( t->right );
}
}
// Avl manipulations
/**
* Rotate binary tree node with left child.
* For AVL trees, this is a single rotation for case 1.
* Update heights, then set new root.
*/
void rotateWithLeftChild( AvlNode * & k2 )
{
AvlNode *k1 = k2->left;
k2->left = k1->right;
k1->right = k2;
k2->height = max( height( k2->left ), height( k2->right ) ) + 1;
k1->height = max( height( k1->left ), k2->height ) + 1;
k2 = k1;
}
/**
* Rotate binary tree node with right child.
* For AVL trees, this is a single rotation for case 4.
* Update heights, then set new root.
*/
void rotateWithRightChild( AvlNode * & k1 )
{
AvlNode *k2 = k1->right;
k1->right = k2->left;
k2->left = k1;
k1->height = max( height( k1->left ), height( k1->right ) ) + 1;
k2->height = max( height( k2->right ), k1->height ) + 1;
k1 = k2;
}
//MY CODE STARTS HERE
void doubleWithLeftChild( AvlNode * & k3 )
{
std::cout << "k3->element: " << k3->element << '\n';
AvlNode *k2 = k3->left;
std::cout << "k2->element: " << k2->element << '\n';
AvlNode *k1 = k3->left->right;
std::cout << "k1->element: " << k1->element << '\n';
k1->left = k2;
k1->right = k3;
k3 = k1;
}
//MY CODE ENDS HERE
};
#endif
|