1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
|
#include <iostream>
#include <iomanip>
#include <string>
#include <vector>
#include <cmath>
#include <cassert>
using namespace std;
const double SMALL = 1.0E-30; // used to stop divide-by-zero
using vec = vector<double>; // vector
using matrix = vector<vec>; // matrix (=collection of (row) vectors)
// Function prototypes
void printMatrix( const matrix &A );
matrix matmul( const matrix &A, const matrix &B );
matrix identity( int n );
matrix transpose( const matrix &A );
bool QR( const matrix &A, matrix &Q, matrix &R );
//======================================================================
int main()
{
matrix A = { { 12, -51, 4 },
{ 6, 167, -68 },
{ -4, 24, -41 } }; // Example in Wikipedia
cout << "\nA:\n"; printMatrix( A );
matrix Q, R;
if ( QR( A, Q, R ) ) // Calls the QR function
{
cout << "\nQ: \n"; printMatrix( Q );
cout << "\nR: \n"; printMatrix( R );
cout << "\n\nCHECKS:\n";
cout << "\nQR:\n" ; printMatrix( matmul( Q, R ) );
cout << "\nQ.QT:\n"; printMatrix( matmul( Q, transpose( Q ) ) );
}
else
{
cout << "Unable to factorise\n";
}
}
//======================================================================
void printMatrix( const matrix &A )
{
const double NEARZERO = 1.0E-10; // interpretation of "zero" for printing purposes
for ( auto &row : A )
{
for ( auto x : row )
{
if ( abs( x ) < NEARZERO ) x = 0.0;
cout << setw( 12 ) << x;
}
cout << '\n';
}
}
//======================================================================
matrix matmul( const matrix &A, const matrix &B ) // Matrix times matrix
{
int rowsA = A.size(), colsA = A[0].size();
int rowsB = B.size(), colsB = B[0].size();
assert( colsA == rowsB );
matrix C( rowsA, vec( colsB, 0.0 ) );
for ( int i = 0; i < rowsA; i++ )
{
for ( int j = 0; j < colsB; j++ )
{
// scalar product of ith row of A and jth column of B
for ( int k = 0; k < colsA; k++ ) C[i][j] += A[i][k] * B[k][j];
}
}
return C;
}
//======================================================================
matrix identity( int n ) // n x n Identity matrix
{
matrix I( n, vec( n, 0.0 ) );
for ( int i = 0; i < n; i++ ) I[i][i] = 1.0;
return I;
}
//======================================================================
matrix transpose( const matrix &A ) // Transpose
{
int rows = A.size(), cols = A[0].size();
matrix AT( cols, vec( rows ) );
for ( int i = 0; i < cols; i++ )
{
for ( int j = 0; j < rows; j++ ) AT[i][j] = A[j][i];
}
return AT;
}
//======================================================================
bool QR( const matrix &A, matrix &Q, matrix &R )
// Factorise A = QR, where Q is orthogonal, R is upper triangular
{
int rows = A.size(), cols = A[0].size();
if ( rows < cols )
{
cout << "Algorithm only works for rows >= cols\n";
return false;
}
R = A;
matrix QT = identity( rows );
for ( int k = 0; k < cols - 1; k++ ) // k is the working column
{
// X vector, based on the elements from k down in the kth column
double alpha = 0;
for ( int i = k; i < rows; i++ ) alpha += R[i][k] * R[i][k];
alpha = sqrt( alpha ); // alpha is the Euclidean norm of Xk
// V vector ( normalise Xk - alpha e_k )
vec V( rows, 0.0 );
double Vnorm = 0.0;
for ( int i = k + 1; i < rows; i++ )
{
V[i] = R[i][k];
Vnorm += V[i] * V[i];
}
V[k] = R[k][k] - alpha;
Vnorm += V[k] * V[k];
Vnorm = sqrt( Vnorm );
if ( Vnorm > SMALL )
{
for ( int i = k; i < rows; i++ ) V[i] /= Vnorm;
}
// Householder matrix: Qk = I - 2 V VT
matrix Qk = identity( rows );
for ( int i = k; i < rows; i++ )
{
for ( int j = k; j < rows; j++ ) Qk[i][j] -= 2.0 * V[i] * V[j];
}
QT = matmul( Qk, QT );
R = matmul( Qk, R );
}
Q = transpose( QT );
return true;
}
//======================================================================
|