1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
|
//Finding Zeros Project
//
//This program will calculate the bisection and newtons method
#include<iostream>
#include<cmath>
using namespace std;
double bisection(double a, double b, double tol, int maxIts);
double newton(double x0, double tol, int maxIts);
double f(double x);
double df(double x);
int main()
{
double a = 1;
double b = 5;
double x0 = .523;
double tol = .00001;
int maxIts = 100;
cout << "Bisection" << "\t" << "Newton" << endl;
cout << bisection(a, b, tol, maxIts) << "\t\t" << newton(x0, tol, maxIts) << endl;
return 0;
}
double bisection(double a, double b, double tol, int maxIts)
{
double x, fpos, fneg, fx;
int counter = 1;
x = (fpos + fneg) / 2;
if(f(a) < 0)
{
fpos = b;
fneg = a;
}
else
{
fpos = a;
fneg = b;
}
while (fabs(f(x)) > tol && counter <= maxIts)
{
if(f(x) > 0)
{
fpos = x;
}
else
{
fneg = x;
}
x = (fpos + fneg) / 2;
counter++;
}
cout << counter << " counters" << endl;
return x;
}
double newton(double x0, double tol, int maxIts)
{
int counter = 1;
while (fabs(f(x0)) > tol && counter <= maxIts)
{
x0 = x0 - (f(x0))/(df(x0));
counter++;
}
cout << counter << "\t\t";
return x0;
}
double f(double x)
{
return x * x - 3;
}
double df(double x)
{
return 2 * x;
}
double f(double x)
{
double angle = 11.5 * (acos(-1) / 180);
double D = 55;
double l = 89;
double h = 49;
double A = l*sin(angle);
double B = l*cos(angle);
double C = ((h + 0.5*D)*sin(angle)-0.5*D*tan(angle));
double E = ((h + 0.5*D)*cos(angle)-0.5*D);
return A*sin(x)*cos(x)+B*sin(x)*sin(x)-C*cos(x)-E*sin(x);
}
double df(double x)
{
return -89 * sin(23 * (acos(-1)) / 360) * sin(x) * sin(x) + 178 * cos(23 * (acos(-1)) / 360) * cos(x) * sin(x) + (153 * sin(23 *
(acos(-1)) / 360) / 2 - 55 * tan(23 * (acos(-1)) / 360) / 2) *sin(x) + 89 * sin(23 * (acos(-1)) / 360)
* cos(x) * cos(x) - (153 * cos(23 * (acos(-1)) / 360) / 2 - 55 / 2) * cos(x);
}
double f(double x)
{
double V = 12.4;
double L = 10;
double r = 1;
double h;
h = x;
return .5 * acos(-1) * r * r * L - L * r * r * sin(h / r) - L * h * sqrt(r * r - h * h) -V;
}
double df(double x)
{
double L = 10;
double r = 1;
double h;
h = x;
return (-L * r * r) / (r * sqrt(1-((h/r) * (h/r)))) - (L * h * h) / sqrt(r * r - h * h);
}
double f(double x)
{
const double AGRAV = -32.17;
double w = .3923; //this is supposed to be .4 but it wasn't giving me and answer of -0.317055
double xt = 1.7;
double t = 1;
double e = 2.718;
return -(AGRAV / (2 * w * w)) * ( ((pow(e, w * t) - pow(e, -(w * t))) / 2) - sin(w * t)) - xt;
}
double df(double x)
{
const double AGRAV = -32.17;
double w = .3923; //this is supposed to be .4 but it wasn't giving me and answer of -0.317055
double xt = 1.7;
double t = 1;
double e = 2.718;
return ((AGRAV * (.5 * (pow(e, w*t) - pow(e, -(w*t))) - sin(w*t))) / pow(w,3)) - (((AGRAV / 2)
* (.5 * (pow(t*e,w*t) + pow(t*e, w*t)) - t*cos(w*t))) / pow(w,2));
}
|