Hello,
Quick version:
Does anyone know of any image processing libraries/techniques that can pick out shapes from a background accurately, even given significant gradients of brightness between different shapes, and a gradually changing background?
Detailed:
I need to pick out some crystals in a darker background (.png images). The program should pick what it believes to be a crystal and color it red, while the rest of the image remains black. Here are some issues that make this challenging (i.e. can't just use a typical threshold feature):
1. Crystals vary in brightness dramatically. Some are bright, while others almost melt into the background.
2. The background itself is somewhat noisy changes and brightness gradually, so a single baseline value can't be used.
3. Especially dark blotches in background exist: these may make it look as if a crystal starts right after one if an algorithm is not properly configured.
4. Some of the bright crystals have a fuzz halo around them that should not be counted as part of the crystal.
5. The program needs to successfully and accurately find at least 90-95% of the crystals.
I don't see an option for posting an example image here, unfortunately.
What I have so far:
1. Have a progressive baseline average for hue moving across the image, and count anything above that value beyond a certain threshold as a crystal.
2. Move both left to right and down an image to improve detection.
3. Using SFML for image processing as that's the easiest thing I know of.
4. Plan to use statistically "unusual" points (i.e. >3 constantly rising hue values) as an indication of a crystal.
5. Plan to use consistently falling values as possible indication of fuzz to "demote" some found crystal pixels to non-pixel status.
The code uses a helper "support.png" file in which a red region on the left and at the top of the image (for the two travel directions) identifies the initial background regions for the program.
Haven't implemented 4 and 5 yet, both should help, but now my program still doesn't fully find some of the darker crystals (though I can fairly clearly distinguish them by eye) and picks up a bit too much fuzz on the brighter ones. Clearly changing the threshold will merely cause a tradeoff between these two, while I need to improve them simultaneously. Any ideas would be greatly appreciated.
Here is my code so far:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
|
#include <iostream>
#include <vector>
#include <string>
#include <SFML/Graphics.hpp>
int X; // Resolution
int Y;
using namespace std;
class List10 {
private:
vector<int> list;
public:
int size();
void add(int);
void reset()
{
list.clear();
}
double average();
int operator[](int i)
{
return list[i];
}
};
int List10::size()
{
return list.size();
}
void List10::add(int val)
{
if (list.size() < 10)
{
list.push_back(val);
}
else
{
for (int i = 1; i < list.size(); i++)
{
list[i - 1] = list[i];
}
list[9] = val;
}
}
double List10::average()
{
double sum = 0;
for (int i = 0; i <= list.size(); i++)
sum += list[i];
return sum / list.size();
}
int main()
{
string inFile;
cout << "Enter the input .png file: ";
cin >> inFile;
cout << "Enter a threshold (pixels): ";
int threshold;
cin >> threshold;
sf::Image inImage;
sf::Image inImage2;
sf::Image outImage;
inImage.loadFromFile(inFile);
inImage2.loadFromFile("support.png");
sf::Vector2u frameSize = inImage.getSize();
X = frameSize.x;
Y = frameSize.y;
outImage.create(X, Y, sf::Color::Black);
vector<vector<int>> hue(Y, vector<int>(X));
vector<vector<bool>> crystal(Y, vector<bool>(X));
sf::Color color;
// Load image into 2d vector
for (int y = 0; y < Y; ++y)
{
for (int x = 0; x < X; ++x)
{
color = inImage.getPixel(x, y);
sat[y][x] = hue[y][x] = color.b + color.g + color.r;
if (color.g != 0 && color.r == 0)
hue[y][x] += 255;
else if (color.r != 0)
hue[y][x] += 510;
}
}
int x2;
int y2;
int up = 0;
List10 base10;
int base;
for (int y = 0; y < Y; ++y)
{
for (int x = 0; x < X; ++x)
{
color = inImage2.getPixel(x, y);
if (color == sf::Color::Red)
{
base10.add(hue[y][x]);
base = base10.average();
//cout << "1\n";
}
else if (base10.size() == 0)
{
x2 = x + 1;
//cout << "2\n";
while (inImage2.getPixel(x2, y) != sf::Color::Red)
{
++x2;
}
base10.add(hue[y][x2]);
base = base10.average();
}
else if (hue[y][x] - base > threshold || up > 3)
{
//cout << "3\n";
crystal[y][x] = true;
outImage.setPixel(x, y, sf::Color::Red);
}
else if (hue[y][x] - base > -6) // Avoid black blotches in background
{
//cout << "4\n";
base10.add(hue[y][x]);
base = base10.average();
}
//cout << "Row " << y << " done.\n";
}
base10.reset();
}
for (int x = 0; x < X; ++x)
{
for (int y = 0; y < Y; ++y)
{
color = inImage2.getPixel(x, y);
if (color == sf::Color::Red)
{
base10.add(hue[y][x]);
base = base10.average();
//cout << "1\n";
}
else if (base10.size() == 0)
{
y2 = y + 1;
//cout << "2\n";
while (inImage2.getPixel(x, y2) != sf::Color::Red)
{
++y2;
}
base10.add(hue[y2][x]);
base = base10.average();
}
else if (hue[y][x] - base > threshold || up > 3)
{
//cout << "3\n";
crystal[y][x] = true;
outImage.setPixel(x, y, sf::Color::Red);
}
else if (hue[y][x] - base > -6) // Avoid black blotches in background
{
//cout << "4\n";
base10.add(hue[y][x]);
base = base10.average();
}
//cout << "Out\n";
}
base10.reset();
}
// Remove noise and smooth image
int neighbors;
for (int y = 1; y < Y - 1; ++y)
{
for (int x = 1; x < X - 1; ++x)
{
neighbors = 0;
if (crystal[y][x] == 1)
{
if (crystal[y][x + 1] == 1)
++neighbors;
if (crystal[y][x - 1] == 1)
++neighbors;
if (crystal[y + 1][x] == 1)
++neighbors;
if (crystal[y - 1][x] == 1)
++neighbors;
if (crystal[y + 1][x + 1] == 1)
++neighbors;
if (crystal[y - 1][x - 1] == 1)
++neighbors;
if (crystal[y + 1][x - 1] == 1)
++neighbors;
if (crystal[y - 1][x + 1] == 1)
++neighbors;
if (neighbors < 4)
{
crystal[y][x] = 0;
outImage.setPixel(x, y, sf::Color::Black);
}
}
}
}
// Smoothed image
outImage.saveToFile("output2.png");
ofstream fout;
string outFile = inFile;
fout.open(outFile + "-hue.csv");
for (int row = 0; row < Y; ++row)
{
for (int col = 0; col < X; ++col)
fout << hue[row][col] << ',';
fout << endl;
}
fout.close();
fout.open(outFile + "-sat.csv");
for (int row = 0; row < Y; ++row)
{
for (int col = 0; col < X; ++col)
fout << sat[row][col] << ',';
fout << endl;
}
fout.close();
system("pause");
return 0;
}
|