1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
|
#define _POSIX_C_SOURCE 199309
#include <time.h>
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#define DEFAULT_SIZE 10000000
#define DEFAULT_THREADS 1
void multithreaded_mergesort(int A[], int size, int num_threads);
typedef struct {
int* A;
int left;
int right;
} mergesort_arg;
typedef struct {
int* A;
int left;
int m;
int right;
} mergeing_arg;
void* mergesort_wrapper(const mergesort_arg* arg);
void mergesort(int A[], int left, int right);
void* merge_wrap(mergeing_arg* arg);
int merge( int A[] , int left , int m , int right);
int ms_diff(struct timespec start, struct timespec stop);
void show_usage(const char* exe);
int main(int argc, char* argv[]) {
int size = DEFAULT_SIZE;
int num_threads = DEFAULT_THREADS;
// Process command-line arguments.
if (argc == 3) {
char *end;
size = strtol(argv[1], &end, 10);
if (*end != 0) {
show_usage(argv[0]);
return EXIT_FAILURE;
}
num_threads = strtol(argv[2], &end, 10);
if (*end != 0) {
show_usage(argv[0]);
return EXIT_FAILURE;
}
if (size < 1 || num_threads < 1) {
show_usage(argv[0]);
return EXIT_FAILURE;
}
} else if (argc != 1) {
show_usage(argv[0]);
return EXIT_FAILURE;
}
// Seed the random number generator.
srand(time(NULL));
// Allocate and populate an array.
int* A = (int*)malloc(size * sizeof(int));
if (A == NULL) {
printf("ERROR: Unable to allocate array.\n");
return EXIT_FAILURE;
}
for (int i = 0; i < size; i++)
A[i] = rand();
// Start tracking execution time.
struct timespec start;
clock_gettime(CLOCK_REALTIME, &start);
multithreaded_mergesort(A, size, num_threads);
// Stop tracking execution time.
struct timespec stop;
clock_gettime(CLOCK_REALTIME, &stop);
printf("%d ms elapsed.\n", ms_diff(start, stop));
free(A);
return EXIT_SUCCESS;
}
void multithreaded_mergesort(int A[], int size, int num_threads) {
// Conceptually partition the array and use separate threads to
// independently sort each section. The thread that invoked this
// function will wait for all other threads to finish.
// Create function arguments for all threads.
mergesort_arg ms_args[num_threads];
for (int i = 0; i < num_threads; i++) {
ms_args[i].A = A;
ms_args[i].left = i * size / num_threads;
ms_args[i].right = (i + 1) * size / num_threads - 1;
}
// Create and start each thread.
pthread_t threads[num_threads];
for (int i = 0; i < num_threads; i++)
if (pthread_create(&threads[i], NULL, mergesort_wrapper, &ms_args[i]) != 0) {
printf("ERROR: Unable to create new thread.\n");
exit(EXIT_FAILURE);
}
// Wait for all threads to finish.
for (int i = 0; i < num_threads; i++)
pthread_join(threads[i], NULL);
// Perform "cleanup" work by merging remaining sections.
mergeing_arg m_args[num_threads / 2];
for (int values_left = num_threads; values_left > 1; values_left = (values_left + 1) / 2) {
// Set function arguments.
for (int i = 0; i < values_left / 2; i++) {
m_args[i].m = (((i + 1) * size / values_left - 1) + (i * size / values_left) ) / 2;
m_args[i].left = i * size / values_left;
m_args[i].right = (i + 1) * size / values_left - 1;
}
// Create and start threads.
for (int i = 0; i < values_left / 2; i++)
if (pthread_create(&threads[i], NULL, merge_wrap, &m_args[i]) != 0) {
printf("ERROR: Unable to create new thread.\n");
exit(EXIT_FAILURE);
}
// Wait for all threads to finish.
for (int i = 0; i < values_left / 2; i++)
pthread_join(threads[i], NULL);
}
}
void* mergesort_wrapper(const mergesort_arg* arg) {
fprintf(stderr, "Sorting section %d-%d.\n", arg->left, arg->right);
mergesort(arg->A, arg->left, arg->right);
return NULL;
}
void* merge_wrap(mergeing_arg* arg) {
merge(arg->A, arg->left, arg->m, arg->right);
return NULL;
}
// Indices left and right are inclusive.
void mergesort(int A[], int left, int right) {
if( left < right){
int m = (right + left )/2;
mergesort(A , left , m );
mergesort(A, m+1 , right);
merge( A, left, m, right);
}
}
int merge( int A[] , int left , int m , int right){
//int* A = (int*)malloc(size * sizeof(int));
int* b = (int*)malloc( ((right - left) + 1) * sizeof(int));
int i = left;
int j = m + 1;
int k = 0;
while( i <= m && j <= right ){
if(A[i] <= A[j])
b[k++] = A[i++];
else
b[k++] = A[j++];
}
while ( i <= m )
b[k++] = A[i++];
while( j <= right)
b[k++] = A[j++];
k--;
while( k >= 0 ){
A[left+ k] = b[k];
k--;
}
free(b);
}
int ms_diff(struct timespec start, struct timespec stop) {
return 1000 * (stop.tv_sec - start.tv_sec) + (stop.tv_nsec - start.tv_nsec) / 1000000;
}
void show_usage(const char* exe) {
printf("Usage: %s [<array-size> <num-threads>]\n", exe);
printf(" If omitted, <array-size> defaults to %d.\n", DEFAULT_SIZE);
printf(" If omitted, <num-threads> defaults to %d.\n", DEFAULT_THREADS);
}
|