1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
|
#include <cstdio>
#include <cstdlib>
#include <complex>
#include <math.h>
#include <iostream>
#include <fstream>
#include <string>
#include <sstream>
#include <new>
using namespace std;
const int ndirac = 4;
const int ndim = 4;
const int Nc = 3;
const int Lx = 24;
const int Ly = 24;
const int Lz = 24;
const int Lt = 48;
const int spaceh = (Lx*Ly*Lz)/2;
const int volh = (Lx*Ly*Lz*Lt)/2;
void hoop(int srccol, int slice, int ipar, int ***cotable, complex<double> ****Psi, complex<double> qtrace[]);
void readslice(complex<double> ****Psi, int srccol, int slice, int ipar);
complex<double> convert_complex(complex<double> in);
void gams(complex<double> a[][ndirac], complex<double> x[][ndirac], int npre, int post);
void prem(complex<double> a[][ndirac], complex<double> b[][ndirac], int npre);
void post(complex<double> x[][ndirac], complex<double> b[][ndirac], int npost);
void snum(int ***cotable);
void out_of_store();
int main(int argc, char *argv[])
{
complex<double> qtrace[Lx], qsum[Lx][Lt];
int srccol, ipar, slice, jk, jt;
set_new_handler(out_of_store);
// The following code allocates memory on the heap for cotable[volh][2][ndim], a very large array
int ***cotable; //Pointer to 2-d arrays (which are pointers to pointers **)
cotable = new int **[volh]; // Cotable now points to volh different two-d arrays. It is a 3-d array.
if(cotable == NULL)
{
//Balls! This pointer points into outer space, where no pointer has gone before
cout << "cotable pointer is null. Oops!" << endl;
}
for(int x = 0; x < volh; x++) //Assigning memory for the other two dimensions
{
cotable[x] = new int *[2];
for(int y = 0; y < 2; y++)
{
cotable[x][y] = new int[ndim];
}
}
// The following code allocates memory for Psi. Move to main if there's a problem
complex<double> ****Psi;
Psi = new complex<double> ***[ndirac];
if(Psi == NULL)
{
//Yikes! Pointer not pointing anywhere...
cout << "Psi pointer is null. Oops!" << endl;
}
for(int x = 0; x < ndirac; x++)
{
Psi[x] = new complex<double> **[Nc];
for(int y = 0; y < Nc; y++)
{
Psi[x][y] = new complex<double> *[spaceh];
for(int z = 0; z < spaceh; z++)
{
Psi[x][y][z] = new complex<double> [ndirac];
}
}
}
snum(cotable);
for(jk = 0; jk < Lx; jk++)
{
for(jt = 0; jt < Lt; jt++)
{
qsum[jk][jt] = 0;
}
}
for(srccol = 0; srccol < Nc; srccol++)
{
for(slice = 0; slice < Lt; slice++)
{
for(ipar = 0; ipar < 2; ipar++)
{
hoop(srccol, slice, ipar, cotable, Psi, qtrace);
for(jk = 0; jk < Lx; jk++)
{
qsum[jk][slice] = qsum[jk][slice] + qtrace[jk];
}
}
}
}
return 0;
}
void hoop(int srccol, int slice, int ipar, int ***cotable, complex<double> ****Psi, complex<double> qtrace[])
{
complex<double> qmatq[ndirac][ndirac], qmat2[ndirac][ndirac];
complex<double> ggq[ndirac][ndirac], gg2[ndirac][ndirac];
complex<double> qzero, qlocal, qdum;
int source[ndim], sink[ndim], isite;
qzero = 0;
for(int i = 0; i < ndim; i++)
{
source[i] = 1; // Initial source point is always at the site (1,1,1,1)
}
for(int jk = 0; jk < Lx; jk++)
{
qtrace[jk] = qzero; // Initialize sum
}
readslice(Psi, srccol, slice, ipar);
for(int jslic = 0; jslic < spaceh; jslic++)
{
isite = jslic*spaceh; // isite = global site number
for(int i = 0; i < ndim; i++)
{
sink[i] = cotable[isite][ipar][i];
}
// Code to delete cotable
for(int x = 0; x < volh; x++)
{
for(int y = 0; y < 2; y++)
{
delete[] cotable[x][y];
}
}
for(int x = 0; x < volh; x++)
{
delete[] cotable[x];
}
delete[] cotable;
for(int sinkcol = 0; sinkcol < Nc; sinkcol++)
{
int jk;
for(int i = 0; i < ndirac; i++) // sink spin
{
for(int j = 0; j < ndirac; j++) // source spin
{
qmatq[i][j] = Psi[i][sinkcol][jslic][j];
qdum = Psi[i][sinkcol][jslic][j];
qmat2[j][i] = -conj(qdum);
}
}
gams(qmat2, gg2, 5, 5);
gams(qmatq, ggq, 3, 1);
qlocal = qzero;
for(int i = 1; i < ndirac; i++)
{
for(int j = 1; j < ndirac; j++)
{
qlocal = qlocal + gg2[i][j]*ggq[j][i];
}
}
jk = sink[1] + 1;
qtrace[jk] = qtrace[jk] + qlocal;
}
}
return;
}
void readslice(complex<double> ****Psi, int srccol, int slice, int ipar)
{
//ifstream::pos_type size; // Equivalent to an integer
long size; // Integer to record file size
complex<double> *zbuff; // Pointer to complex to create complex array
//char *buffer; // Pointer to char - required to store binary data, which is a whole bunch of chars
int kount;
stringstream ss;
string filename;
for(int srcdir = 0; srcdir < ndirac; srcdir++)
{
ss << "bqcd.567.00000.00." << srcdir+1 << "." << srccol+1 << "." << slice << "." << ipar << ".prop";
// That was the (literally) variable filename
filename = ss.str(); // Create string
ss.seekp(0, ios::beg); // Place the put pointer back to start of the stringstream
cerr <<"The filename is:" << filename << endl; // A check to see which files were used
ifstream readfile;
readfile.open(filename.c_str(), ios::in | ios::binary | ios::ate);
size = readfile.tellg(); // Determine file size from the get pointer, which is now at the end (ate)
readfile.seekg(0, ios::beg); // Place the get pointer at the beginning of the ifstream
//buffer = new char[size]; // Create space for input
char buffer[size];
readfile.read(buffer, size); // Read binary input into buffer, which is an array of chars
zbuff = reinterpret_cast <complex<double> *> (buffer); // Store the base address of buffer
// in a pointer to complex numbers. The data is now an array of complex numbers
kount = 0;
for(int k = 0; k < spaceh; k++)
{
for(int j = 0; j < Nc; j++) // Sink colour
{
for(int i = 0; i < ndirac; i++) // Sink spin
{
Psi[i][j][k][srcdir] = convert_complex(zbuff[kount]); // Put complex entries into Psi
kount++;
}
}
}
readfile.close();
}
cout << Psi[1][1][1][0] << endl; // Test output
cout << Psi[2][1][2][1] << endl;
cout << Psi[0][0][0][2] << endl;
cout << Psi[0][0][790][3] << endl;
return;
}
complex<double> convert_complex(complex<double> in) // Function to reverse the byte order of one c.number
{
complex<double> out;
char *p_in = (char *) ∈
char *p_out = (char *) &out;
p_out[0] = p_in[15];
p_out[1] = p_in[14];
p_out[2] = p_in[13];
p_out[3] = p_in[12];
p_out[4] = p_in[11];
p_out[5] = p_in[10];
p_out[6] = p_in[9];
p_out[7] = p_in[8];
p_out[8] = p_in[7];
p_out[9] = p_in[6];
p_out[10] = p_in[5];
p_out[11] = p_in[4];
p_out[12] = p_in[3];
p_out[13] = p_in[2];
p_out[14] = p_in[1];
p_out[15] = p_in[0];
return out;
}
|