1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
|
#include <cstdio>
#include <cstdlib>
#include <complex>
#include <math.h>
#include <iostream>
#include <fstream>
#include <string>
#include <sstream>
using namespace std;
const int ndirac = 4;
const int ndim = 4;
const int Nc = 3;
const int Lx = 24;
const int Ly = 24;
const int Lz = 24;
const int Lt = 48;
const int spaceh = (Lx*Ly*Lz)/2;
const int volh = (Lx*Ly*Lz*Lt)/2;
void hoop(int srccol, int slice, int ipar, int cotable[][2][ndim], complex<double> qtrace[]);
void readslice(complex<double> Psi[][Nc][spaceh][ndirac], int srccol, int slice, int ipar);
complex<double> convert_complex(complex<double> in);
void gams(complex<double> a[][ndirac], complex<double> x[][ndirac], int npre, int post);
void prem(complex<double> a[][ndirac], complex<double> b[][ndirac], int npre);
void post(complex<double> x[][ndirac], complex<double> b[][ndirac], int npost);
void snum(int cotable[][2][ndim]);
int main(int argc, char *argv[])
{
complex<double> qtrace[Lx], qsum[Lx][Lt];
int cotable[volh][2][ndim];
int srccol, ipar, slice, jk, jt;
snum(cotable);
for(jk = 0; jk < Lx; jk++)
{
for(jt = 0; jt < Lt; jt++)
{
qsum[jk][jt] = 0;
}
}
for(srccol = 0; srccol < Nc; srccol++)
{
for(slice = 0; slice < Lt; slice++)
{
jt = slice;
for(ipar = 0; ipar < 2; ipar++)
{
hoop(srccol, slice, ipar, cotable, qtrace);
for(jk = 0; jk < Lx; jk++)
{
qsum[jk][jt] = qsum[jk][jt] + qtrace[jk];
}
}
}
}
return 0;
}
void hoop(int srccol, int slice, int ipar, int cotable[][2][ndim], complex<double> qtrace[])
{
complex<double> Psi[ndirac][Nc][spaceh][ndirac];
complex<double> qmatq[ndirac][ndirac], qmat2[ndirac][ndirac];
complex<double> ggq[ndirac][ndirac], gg2[ndirac][ndirac];
complex<double> qzero, qlocal, qdum;
int source[ndim], sink[ndim], isite;
qzero = 0;
for(int i = 0; i < ndim; i++)
{
source[i] = 1; // Initial source point is always at the site (1,1,1,1)
}
for(int jk = 0; jk < Lx; jk++)
{
qtrace[jk] = qzero; // Initialize sum
}
readslice(Psi, srccol, slice, ipar);
for(int jslic = 0; jslic < spaceh; jslic++)
{
isite = jslic*spaceh; // isite = global site number
for(int i = 0; i < ndim; i++)
{
sink[i] = cotable[isite][ipar][i];
}
for(int sinkcol = 0; sinkcol < Nc; sinkcol++)
{
int jk;
for(int i = 0; i < ndirac; i++) // sink spin
{
for(int j = 0; j < ndirac; j++) // source spin
{
qmatq[i][j] = Psi[i][sinkcol][jslic][j];
qdum = Psi[i][sinkcol][jslic][j];
qmat2[j][i] = -conj(qdum);
}
}
gams(qmat2, gg2, 5, 5);
gams(qmatq, ggq, 3, 1);
qlocal = qzero;
for(int i = 1; i < ndirac; i++)
{
for(int j = 1; j < ndirac; j++)
{
qlocal = qlocal + gg2[i][j]*ggq[j][i];
}
}
jk = sink[1] + 1;
qtrace[jk] = qtrace[jk] + qlocal;
}
}
return;
}
void readslice(complex<double> Psi[][Nc][spaceh][ndirac], int srccol, int slice, int ipar)
{
ifstream::pos_type size; // Equivalent to an integer
complex<double> *zbuff; // Array to store binary input later in function
int kount;
stringstream ss;
string filename;
for(int srcdir = 0; srcdir < ndirac; srcdir++)
{
ss << "bqcd.567.00000.00." << srcdir+1 << "." << srccol << "." << slice << "." << ipar << ".prop";
// That was the (literally) variable filename
filename = ss.str(); // Create string
ss.seekp(0, ios::beg); // Place the put pointer back to start of the stringstream
cerr <<"The filename is:" << filename << endl; // A check to see which files were used
ifstream readfile;
readfile.open(filename.c_str(), ios::in | ios::binary | ios::ate);
size = readfile.tellg(); // Determine file size fron the get pointer, which is now at the end (ate)
readfile.seekg(0, ios::beg); // Place the get pointer at the beginning of the ifstream
zbuff = new complex<double>[size]; // Create space for input
readfile.read(reinterpret_cast <char *> (zbuff), size); // Read binary input into zbuff
kount = 0;
for(int k = 0; k < spaceh; k++)
{
for(int j = 0; j < Nc; j++) // Sink colour
{
for(int i = 0; i < ndirac; i++) // Sink spin
{
Psi[i][j][k][srcdir] = convert_complex(zbuff[kount]); // Put complex entries into Psi
kount++;
}
}
}
delete zbuff;
readfile.close();
}
cout << Psi[1][1][1][0] << endl; // Test output
cout << Psi[2][1][2][1] << endl;
cout << Psi[0][0][0][2] << endl;
cout << Psi[0][0][790][3] << endl;
return;
}
complex<double> convert_complex(complex<double> in) // Function to reverse the byte order of one c.number
{
complex<double> out;
char *p_in = (char *) ∈
char *p_out = (char *) &out;
p_out[0] = p_in[15];
p_out[1] = p_in[14];
p_out[2] = p_in[13];
p_out[3] = p_in[12];
p_out[4] = p_in[11];
p_out[5] = p_in[10];
p_out[6] = p_in[9];
p_out[7] = p_in[8];
p_out[8] = p_in[7];
p_out[9] = p_in[6];
p_out[10] = p_in[5];
p_out[11] = p_in[4];
p_out[12] = p_in[3];
p_out[13] = p_in[2];
p_out[14] = p_in[1];
p_out[15] = p_in[0];
return out;
}
void gams(complex<double> a[][ndirac], complex<double> x[][ndirac], int npre, int npost)
{
complex<double> b[ndirac][ndirac];
prem(a, b, npre);
post(x, b, npost);
return;
}
|