1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
|
#include <windows.h>
#include <cmath>
#include <vector>
class CryptoClass
{
long publickey;
long privatekey;
long modl; //Modulus
public :
CryptoClass(); //To be used to just generate private and public keys.
CryptoClass(long &,long &,long &);//To be used just to generate private and public keys.
CryptoClass(long key,long modulus) // Should be used when a data is to be encrypted or decrypted using a key.
{
publickey = privatekey = key;
modl = modulus;
}
long ret_publickey()
{
return publickey;
}
long ret_privatekey()
{
return privatekey;
}
long ret_modulus()
{
return modl;
}
bool isPrime(long);
void encrypt(char *);
void decrypt(char *);
long genrndprimes(int , int);
long genrndnum(int , int);
int gcd ( int, int);
int totient(int);
};
CryptoClass::CryptoClass()
{
long p1,p2; //Prime numbers
long n = 0; //Modulus
long phi =0; //Totient value.
long e = 0; //Public key exponent.
long d = 0; //Private key exponent.
p1 = genrndprimes(100,900);
p2 = genrndprimes(100,900);
n = p1*p2;
phi = totient(n);
e = genrndnum(2,(phi-1));
while(gcd(e,phi)!=1)
{
e = genrndnum(2,(phi-1));
}
d = (1/e)%phi; //Modular Multiplicative Inverse.
privatekey = e;
publickey = d;
modl = n;
}
CryptoClass::CryptoClass(long &pubkey,long &privkey,long &mdls)
{
long p1,p2; //Prime numbers
long n = 0; //Modulus
long phi =0; //Totient value.
long e = 0; //Public key exponent.
long d = 0; //Private key exponent.
p1 = genrndprimes(100,900);
Sleep(1000);
p1 = genrndprimes(100,900);
n = p1*p2;
phi = totient(n);
e = genrndnum(2,(phi-1));
while(gcd(e,phi)!=1)
{
e = genrndnum(2,(phi-1));
}
d = (1/e)%phi; //Modular Multiplicative Inverse.
privatekey = e;
publickey = d;
pubkey = publickey;
privkey = privatekey;
mdls = n;
modl = n;
}
void CryptoClass::encrypt(char *dat)
{
long siz = strlen(dat);
for(long i=0;i<siz;i++)
{
dat[i]=(long)pow((double)dat[i],publickey) % modl;
}
}
void CryptoClass::decrypt(char *datn)
{
long sizz = strlen(datn);
for(long i=0;i<sizz;i++)
{
datn[i]=(long)pow((double)datn[i],privatekey)%modl;
}
}
long CryptoClass::genrndprimes(int a, int b){
long pivot;
do{
pivot= rand() % b + a;
if (isPrime(pivot))
return pivot;
} while (1==1);
}
bool CryptoClass::isPrime(long pivot) {
if(pivot <= 1)
return false;
int root = sqrt((double)pivot);
//start at 2 because all numbers are divisible by 1
for(int x = 2; x <= root; x++) //You only need to check up to and including the root
{
if(pivot % x == 0)
return false;
}
return true;
}
long CryptoClass::genrndnum(int a, int b){
long pivot;
pivot= rand() % b + a;
return pivot;
}
int CryptoClass::gcd ( int a, int b )
{
int c;
while ( a != 0 ) {
c = a; a = b%a; b = c;
}
return b;
}
int CryptoClass::totient(int n)
{
if (n == 1)
return 1ll;
int out = n;
// 2
if (n % 2 == 0) {
out -= out / 2;
do
n /= 2;
while (n % 2 == 0);
}
// odds
for (int i = 3; i * i <= n; i += 2)
if (n % i == 0) {
out -= out / i;
do
n /= i;
while (n % i == 0);
}
//
if (n > 1)
out -= out / n;
return out;
}
|