1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
|
//matrix_cir_trv.h
#ifndef __MATRIX_CIR_TRV_H__
#define __MATRIX_CIR_TRV_H__
#include <iostream>
#include <vector>
using namespace std;
template<typename _T>
class cMatrixCirTrv
{
private:
//data
class node
{
private:
_T m_data; //data
bool m_visited; //is this index visited during traversing
public:
node(_T data = _T(0), bool visited = false) :
m_data(data), m_visited(visited)
{}
~node()
{}
_T get_data()
{
return m_data;
}
void set_data(const _T data)
{
m_data = data;
}
bool get_visited()
{
return m_visited;
}
void set_visited(const bool visited)
{
m_visited = visited;
}
};
node **m_matrix; //matrix which will be traversed
int m_size; //size of the matrix, it will be (size X size)
int m_CurrRow; //current row
int m_CurrCol; //current column
//rotation in which to rotate, either clockwise(turn to righ everytime)
//or anticlockwise(turn left everytime)
int m_rotation;
//which direction we are moving, it can be left, right, up or down
int m_direction;
//dont copy or assign
cMatrixCirTrv(const cMatrixCirTrv&);
cMatrixCirTrv& operator =(const cMatrixCirTrv&);
//functions
bool CanWeGoStraight(const int row, const int column);
bool CanWeTurnAClockwise(const int row, const int column);
bool CanWeTurnClockwise(const int row, const int column);
void MoveStraight(int *row, int *column);
void TurnAClockwise();
void TurnClockwise();
void PrintPosition();
protected:
public:
cMatrixCirTrv(const int size = MIN_SIZE, const int rotation = DEF_ROTATION);
~cMatrixCirTrv();
//which side to rotate
enum ROTATION
{
INVALID = 0,
CLOCKWISE = 1,
ANTICLOCKWISE = 2,
DEF_ROTATION = CLOCKWISE,
};
//error code of the functions
enum E_CODES
{
_SUCCESS = 0,
_ERROR = -1,
};
//size of the matrix
enum SIZE
{
MIN_SIZE = 3,
MAX_SIZE = 15,
DEF_SIZE = 3,
};
//which side we are going in the matrix, left, right, up or down
//left(column decreases), right(column increases), up(row decreases), down(row increases)
//we can do any one of these, i.e if we are moving left then we are not moving right or up.
//this is important as we should know which direction we are going in the matrix
/**
1 2 3
4 5 6 up(row--)
7 8 9 left(column--) _|_ right(column++)
|
down(row++)
*/
enum DIRECTION
{
LEFT = 1,
RIGHT = 2,
UP = 3,
DOWN = 4,
};
int MakeMatrix();
void PrintMatrix();
};
template<typename _T>
cMatrixCirTrv<_T>::cMatrixCirTrv(const int size, const int rotation) :
m_size(size),
m_CurrRow(-1),
m_CurrCol(-1),
m_rotation(rotation),
m_direction(LEFT)
{
try
{
m_matrix = reinterpret_cast<node**>(new node[m_size]);
for(int i = 0; i < m_size; i++)
{
*(m_matrix + i) = new node[m_size];
}
}
catch(std::bad_alloc)
{
//oops!! needs to be handled.
m_matrix = NULL;
}
}
template<typename _T>
cMatrixCirTrv<_T>::~cMatrixCirTrv()
{
if(m_matrix != NULL)
{
//free the memory
int i;
for(i = 0; i < m_size; i++)
{
//Crashes here for cMatrixCirTrv<char>
delete [] *(m_matrix + i);
}
delete [] reinterpret_cast<node*>(m_matrix);
m_size = 0;
m_rotation = INVALID;
}
}
template<typename _T>
int cMatrixCirTrv<_T>::MakeMatrix()
{
cout << "Total elements to enter: " << (m_size * m_size) << endl;
cout << "Enter row wise" << endl;
_T temp;
for(int i = 0; i < m_size; i++)
{
for(int j = 0; j < m_size; j++)
{
cout << "Enter[" << i << "," << j << "]: ";
cin >> temp;
(*(*(m_matrix + i) + j)).set_data(temp);
(*(*(m_matrix + i) + j)).set_visited(false);
}
}
cout << endl << endl << "You entered: " << endl;
for(int i = 0; i < m_size; i++)
{
for(int j = 0; j < m_size; j++)
{
cout << (*(*(m_matrix + i) + j)).get_data() << "\t";
}
cout << endl;
}
return _SUCCESS;
}
template<typename _T>
void cMatrixCirTrv<_T>::PrintMatrix()
{
if(m_size == 0)
return;
int middle = (m_size / 2);
m_CurrRow = middle;
m_CurrCol = middle;
m_direction = LEFT; //in the begining we are moving in left direction
int iteration = 0;
cout << endl << endl << "Printing... " << endl;
//print first element here and move straight
if(CanWeGoStraight(m_CurrRow, m_CurrCol))
{
++iteration;
PrintPosition();
MoveStraight(&m_CurrRow, &m_CurrCol);
}
while(true)
{
if(m_rotation == ANTICLOCKWISE)
{
//first we try to move anti-clockwise everytime
if(CanWeTurnAClockwise(m_CurrRow, m_CurrCol))
{
PrintPosition();
TurnAClockwise();
MoveStraight(&m_CurrRow, &m_CurrCol);
if((++iteration % m_size) == 0)
cout << endl;
continue;
}
//we could not move anti-clockwise, try to move forward
if(CanWeGoStraight(m_CurrRow, m_CurrCol))
{
PrintPosition();
MoveStraight(&m_CurrRow, &m_CurrCol);
if((++iteration % m_size) == 0)
cout << endl;
continue;
}
//we cannot turn as well as move straight, it means we are done
//print the last one and enjoy the show!!!
PrintPosition();
if((++iteration % m_size) == 0)
cout << endl;
break;
}
else
{
//for clockwise move
}
}//while(true)
return;
}
template<typename _T>
bool cMatrixCirTrv<_T>::CanWeGoStraight(const int row, const int column)
{
bool retval = false;
switch(m_direction)
{
case LEFT:
if((column - 1) >= 0)
retval = true;
break;
case RIGHT:
if((column + 1) < m_size)
retval = true;
break;
case UP:
if((row - 1) >= 0)
retval = true;
break;
case DOWN:
if((row + 1) < m_size)
retval = true;
break;
}
return retval;
}
template<typename _T>
bool cMatrixCirTrv<_T>::CanWeTurnAClockwise(const int row, const int column)
{
/**
1 2 3
4 5 6 up
7 8 9 left(column--) _|_ right(column++)
|
down(row++)
up - (turning a-clockwise means we need to check (column-1) for validity
and then we need to see if that is visited or not.
so lets say we are at 5 and moving up, turning a-clockwise we need to see if we have visited 4 or not.
again, if se are at 1 and moving up, turning a-clockwise is not possible as (column-1) is less then 0, not valid
same for all the cases
*/
//(*(*(m_matrix + row) + column)).get_visited()
bool retval = false;
switch(m_direction)
{
case LEFT:
if((row + 1) < m_size)
retval = !(*(*(m_matrix + row + 1) + column)).get_visited();
break;
case RIGHT:
if((row - 1) >= 0)
retval = !(*(*(m_matrix + row - 1) + column)).get_visited();
break;
case UP:
if((column - 1) >= 0)
retval = !(*(*(m_matrix + row) + column - 1)).get_visited();
break;
case DOWN:
if((column + 1) < m_size)
retval = !(*(*(m_matrix + row) + column + 1)).get_visited();
break;
}
return retval;
}
template<typename _T>
bool cMatrixCirTrv<_T>::CanWeTurnClockwise(const int row, const int column)
{
//not implemented for clockwise
}
template<typename _T>
void cMatrixCirTrv<_T>::MoveStraight(int *row, int *column)
{
//direction will not change in moving straight
//update the visited value
switch(m_direction)
{
case LEFT:
(*(*(m_matrix + *row) + *column)).set_visited(true);
*column -= 1;
break;
case RIGHT:
(*(*(m_matrix + *row) + *column)).set_visited(true);
*column += 1;
break;
case UP:
(*(*(m_matrix + *row) + *column)).set_visited(true);
*row -= 1;
break;
case DOWN:
(*(*(m_matrix + *row) + *column)).set_visited(true);
*row += 1;
break;
}
}
template<typename _T>
void cMatrixCirTrv<_T>::TurnAClockwise()
{
//direction will change and not the index.
//turning means we will change the face and will not move.
//move anti-clockwise is a combination of (TurnAClockwise + MoveStraight)
switch(m_direction)
{
case LEFT:
m_direction = DOWN;
break;
case RIGHT:
m_direction = UP;
break;
case UP:
m_direction = LEFT;
break;
case DOWN:
m_direction = RIGHT;
break;
}
}
template<typename _T>
void cMatrixCirTrv<_T>::TurnClockwise()
{
}
template<typename _T>
void cMatrixCirTrv<_T>::PrintPosition()
{
cout << (*(*(m_matrix + m_CurrRow) + m_CurrCol)).get_data() << "\t";
}
#endif
|