1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
|
#include <cmath>;
#include <iostream>
#include <fstream>
#include <cstdlib>
#include <string>
#include <iomanip>
#include <armadillo>
using namespace arma;
using namespace std;
inline void n1234(int nodes, int ny, int nx, double ly, double lx, Mat<int>& N, int l){
for (int i = 0; i<nodes; i++){
N(i, 0) = ly*((int)(i/ny));
N(i, 1) = lx*(i-ny*((int)(i/ny)));
}
for (int i = 1*(ny-1)/3; i<1+2*(ny-1)/3; i++) {
N(i, 2) = 1;
N(i, 3) = 1;
}
N((nx-1)*ny+(ny-1)/2, 5) = -l;
return;
}
inline void doff(vec& dof, int nodes, Mat<int>N){
dof(0) = 1;
dof(nodes) = 1;
for (int i = 0; i<nodes; i++){
if (i>=1){
dof(i) = (1-N(i, 2))+dof(i-1);
dof(i + nodes) = (1-N(i, 3))+dof(i+nodes-1);
}
}
for (int i = 1; i<nodes; i++){
if (N(i, 2) == 1){
dof(i) = 0;
}
if (N(i, 3) == 1){
dof(i+nodes) = 0;
}
}
for(int i = 0; i<nodes; i++){
if (dof(i+nodes) != 0){
dof(i+nodes) += dof(nodes-1);
}
}
return;
}
inline void PCLf1(int elems, int nodes, mat& PCL){
vec N11(elems);
vec N22(elems);
mat N1(nodes, nodes);
mat N2(nodes, nodes);
int ka = 0;
int kb = 0;
for (int i = 0; i<nodes; i++){
for (int k = 0; k<nodes; k++){
N1(i, k) = k+1;
N2(i, k) = i+1;
if (k>=i){
N1(i, k) = 0;
N2(i, k) = 0;
}
}
}
for (int i = 0; i<nodes; i++){
for (int k = 0; k<nodes; k++){
if (N1(k, i) > 0){
N11(kb) = N1(k, i);
kb++;
}
if (N2(k, i) > 0){
N22(ka) = N2(k, i);
ka++;
}
}
}
for (int i = 0; i<elems; i++){
PCL(i, 0) = N11(i);
PCL(i, 1) = N22(i);
}
return;
}
inline void PCLf2(int elems, int nodes, mat& PCL, Mat<int>N){
mat Le(elems, 2);
Le.zeros();
for (int i = 0; i<elems; i++){
Le(i, 0) = N(PCL(i, 0) - 1, 0) - N(PCL(i, 1) - 1, 0);
Le(i, 1) = N(PCL(i, 0) - 1, 1) - N(PCL(i, 1) - 1, 1);
PCL(i, 2) = sqrt(pow(Le(i, 0), 2) + pow(Le(i, 1), 2));
}
return;
}
inline void PCLf3(int elems, int nodes, mat&PCL, double lx, double ly, int& elem_no){
double adjacent = 1.01*sqrt(pow(lx, 2)+pow(ly, 2));
for (int i = 0; i < elems; i++){
if (PCL(i, 2)<adjacent){
PCL(i, 3) = 1;
elem_no++;
}
}
}
inline void Ef(mat& E, mat PCL, int nodes, int elems){
int kc = 0;
for (int i = 0; i<elems; i++){
if (PCL(i, 3) == 1){
for (int k = 0; k<4; k++){
E(kc, k) = PCL(i, k);
}
kc++;
}
}
}
void solverr(Mat<int>, mat, int, int, int, int, int, vec);
void MATtoARR(mat, double**&);
void ARRtoMAT(int, int, mat&, double**);
void VECtoARR(vec, double*&);
extern int linprog1(double**, int, double*, int, double*, int);
int main(){
cout.precision(6);
int stop;
int H = 500;
int B = 250;
int nx = 3;
int ny = 7;
int l = 1;
int sc = 275;
int st = 275;
int j = 2;
const int nodes = nx*ny;
const int elems = nodes*(nodes-1)/2;
int elem_no = 0;
double lx;
double ly;
double adjacent_distance;
int addedmem = 0;
int addedmem_no = 1;
double disp_size[2];
Mat<int> N(nodes, 8); // contains node x position, y position, marks supports, marks external loads
vec dof(2*nodes); // cumulative list of degrees of freedom
mat PCL(elems, 4); // first node, second node, distance, accepted
disp_size[0] = B + 20;
disp_size[1] = H + 20;
lx = B/(nx-1);
ly = H/(ny-1);
N.zeros();
PCL.zeros();
n1234(nodes, ny, nx, ly, lx, N, l); // function for creating N
PCLf1(elems, nodes, PCL); // function for creating the first 2 elements of PCL
doff(dof, nodes, N); // Degree of Freedom function
PCLf2(elems, nodes, PCL, N); // function for 3rd element of PCL
PCLf3(elems, nodes, PCL, lx, ly, elem_no); // function for 4th
mat E(elem_no, 4); // active members of PCL
Ef(E, PCL, nodes, elems); // function for E
vec nono(N.n_rows);
for (int i = 0; i< N.n_rows; i++){
nono(i) = N(i, 0);
}
uvec nodes_no = find(nono > 0);
solverr(N, E, st, sc, j, E.n_rows, nodes_no.size(), dof);
cin >> stop;
}
void solverr(Mat<int>N, mat E, int st, int sc, int j, int elem_no, int nodes_no, vec dof){
const double PI = 3.14159265359;
vec X(elem_no*2); X.zeros();
mat B(8*elem_no, 3); // sparse matrix
double n1;
double n2;
int kB = 0;
vec coordinate(2);
mat sub_matrix(2, 2);
for (int elem = 0; elem < elem_no; elem ++){
n1 = E(elem, 0); // finds the first out of the pair of nodes
n2 = E(elem, 1); // finds the second
coordinate(0) = (N(n2 - 1, 0) - N(n1 - 1, 0))/E(elem, 2); // change in x over total change
coordinate(1) = (N(n2 - 1, 1) - N(n1 - 1, 1))/E(elem, 2); // change in y over total change
for (int i = 0; i<2; i++){
for (double k = 0; k<2; k++){
sub_matrix(i, k) = coordinate(i)*(1 - 2*cos(k*PI/2));
}
}
if (sub_matrix(0, 0) != 0){
B(kB, 0) = n1;
B(kB, 1) = elem;
B(kB, 2) = sub_matrix(0, 0);
//B(n1, elem) = sub_matrix(0, 0);
kB += 1;
B(kB, 0) = n2;
B(kB, 1) = elem;
B(kB, 2) = -sub_matrix(0, 0);
//B(n2, elem) = -sub_matrix(0, 0);
kB += 1;
}
if (sub_matrix(1, 0) != 0){
B(kB, 0) = n1 + nodes_no;
B(kB, 1) = elem;
B(kB, 2) = sub_matrix(1, 0);
//B(n1 + nodes_no, elem) = sub_matrix(1, 0);
kB += 1;
B(kB, 0) = n2 + nodes_no;
B(kB, 1) = elem;
B(kB, 2) = -sub_matrix(1, 0);
//B(n2 + nodes_no, elem) = -sub_matrix(1, 0);
kB += 1;
}
if (sub_matrix(0, 1) != 0){
B(kB, 0) = n1;
B(kB, 1) = elem + elem_no;
B(kB, 2) = sub_matrix(0, 1);
//B(n1, elem + elem_no) = sub_matrix(0, 1);
kB += 1;
B(kB, 0) = n2;
B(kB, 1) = elem + elem_no;
B(kB, 2) = -sub_matrix(0, 1);
//B(n2, elem + elem_no) = -sub_matrix(0, 1);
kB += 1;
}
if (sub_matrix(1, 1) != 0){
B(kB, 0) = n1 + nodes_no;
B(kB, 1) = elem + elem_no;
B(kB, 2) = sub_matrix(1, 1);
//B(n1 + nodes_no, elem + elem_no) = sub_matrix(1, 1);
kB += 1;
B(kB, 0) = n1 + nodes_no;
B(kB, 1) = elem + elem_no;
B(kB, 2) = -sub_matrix(1, 1);
//B(n2 + nodes_no, elem + elem_no) = -sub_matrix(1, 1);
kB += 1;
}
}
vec n3(N.n_rows);
uvec n5;
int n7;
vec n4(N.n_rows);
uvec n6;
int n8;
for (int i = 0; i< N.n_rows; i++){
n3(i) = N(i, 2);
n4(i) = N(i, 3);
}
n5 = find(n3>0);
n6 = find(n4>0);
n7 = n5.size();
n8 = n6.size();
for (int i = 0; i<B.n_rows; i++){
if (B(i, 0) == n7){
B.shed_row(i);
}
if (B(i, 0) == n8 + nodes_no){
B.shed_row(i);
}
}
int i = 0;
do {
if (B(i, 2) <= 0){
B.shed_row(i);
i--;
}
i++;
} while (i<B.n_rows);
for (int i = 0; i<B.n_rows; i++){
}
double** Barray = new double*[B.n_rows];
MATtoARR(B, Barray);
n5 = find(n3==0);
n6 = find(n4==0);
vec f(n3.size()*2);
vec solverer(n3.size()*2);
for (int i = 0; i<n3.size(); i++){
f(i) = N(i, 4);
f(i + n3.size()) = N(i, 5);
}
vec OBJ(elem_no*2);
for (int i = 1; i<=elem_no; i++){
OBJ(2*i-2) = 2*j + (E(i-1, 2)/st);
OBJ(2*i-1) = 2*j + (E(i-1, 2)/sc);
}
//cout << n3.size()*2 << " " << elem_no*2 << " " << B.n_rows << endl;
double* farray = new double[f.size()];
VECtoARR(f, farray);
double* objarray = new double[OBJ.size()];
VECtoARR(OBJ, objarray);
linprog1(Barray, (int)B.n_rows, farray, (int)f.size(), objarray, (int)OBJ.size());
}
void MATtoARR(mat Matr, double**& Arre){
for (int i = 0; i<Matr.n_rows; i++){
Arre[i] = new double(Matr.n_cols);
for (int k = 0; k<Matr.n_cols; k++){
Arre[i][k] = Matr(i, k);
}
}
}
void VECtoARR(vec Vect, double*& Arre){
for (int i = 0; i<Vect.size(); i++){
Arre[i] = Vect(i);
}
}
void ARRtoMAT(int rows, int cols, mat& Matr, double** Arre){
for (int i = 0; i<rows; i++){
for (int k = 0; k<cols; k++){
Matr(i, k) = Arre[i][k];
}
}
}
|