"The system cannot find the path specified"

I have two pieces of code:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
#include <cmath>;
#include <iostream>
#include <fstream>
#include <cstdlib>
#include <string>
#include <iomanip>
#include <armadillo>
using namespace arma;
using namespace std;




inline void n1234(int nodes, int ny, int nx, double ly, double lx, Mat<int>& N, int l){
	for (int i = 0; i<nodes; i++){
		N(i, 0) = ly*((int)(i/ny));
		N(i, 1) = lx*(i-ny*((int)(i/ny)));
	}
	for (int i = 1*(ny-1)/3; i<1+2*(ny-1)/3; i++) {
		N(i, 2) = 1;
		N(i, 3) = 1;
	}
	N((nx-1)*ny+(ny-1)/2, 5) = -l;
	return;
}




inline void doff(vec& dof, int nodes, Mat<int>N){
	dof(0) = 1;
	dof(nodes) = 1;
	for (int i = 0; i<nodes; i++){
		if (i>=1){
			dof(i) = (1-N(i, 2))+dof(i-1);
			dof(i + nodes) = (1-N(i, 3))+dof(i+nodes-1);
		}
	}
	for (int i = 1; i<nodes; i++){
		if (N(i, 2) == 1){
			dof(i) = 0;
		}
		if (N(i, 3) == 1){
			dof(i+nodes) = 0;
		}
	}
	for(int i = 0; i<nodes; i++){
		if (dof(i+nodes) != 0){
			dof(i+nodes) += dof(nodes-1);
		}
	}
	return;
}





inline void PCLf1(int elems, int nodes, mat& PCL){
	vec N11(elems);
	vec N22(elems);
	mat N1(nodes, nodes);
	mat N2(nodes, nodes);
	int ka = 0;
	int kb = 0;
	for (int i = 0; i<nodes; i++){
		for (int k = 0; k<nodes; k++){
			N1(i, k) = k+1;
			N2(i, k) = i+1;
			if (k>=i){
				N1(i, k) = 0;
				N2(i, k) = 0;
			}
		}
	}
	for (int i = 0; i<nodes; i++){
		for (int k = 0; k<nodes; k++){
			if (N1(k, i) > 0){
				N11(kb) = N1(k, i);
				kb++;
			}
			if (N2(k, i) > 0){
				N22(ka) = N2(k, i);
				ka++;
			}
		}
	}
	for (int i = 0; i<elems; i++){
		PCL(i, 0) = N11(i);
		PCL(i, 1) = N22(i);
	}
	return;
}



inline void PCLf2(int elems, int nodes, mat& PCL, Mat<int>N){
	mat Le(elems, 2);
	Le.zeros();
	for (int i = 0; i<elems; i++){
		Le(i, 0) = N(PCL(i, 0) - 1, 0) - N(PCL(i, 1) - 1, 0);
		Le(i, 1) = N(PCL(i, 0) - 1, 1) - N(PCL(i, 1) - 1, 1);
		PCL(i, 2) = sqrt(pow(Le(i, 0), 2) + pow(Le(i, 1), 2));
	}
	return;
}




inline void PCLf3(int elems, int nodes, mat&PCL, double lx, double ly, int& elem_no){
	double adjacent = 1.01*sqrt(pow(lx, 2)+pow(ly, 2));
	for (int i = 0; i < elems; i++){
		if (PCL(i, 2)<adjacent){
			PCL(i, 3) = 1;
			elem_no++;
		}
	}
}





inline void Ef(mat& E, mat PCL, int nodes, int elems){
	int kc = 0;
	for (int i = 0; i<elems; i++){
		if (PCL(i, 3) == 1){
			for (int k = 0; k<4; k++){
				E(kc, k) = PCL(i, k);
			}
			kc++;
		}
	}
}





void solverr(Mat<int>, mat, int, int, int, int, int, vec);
void MATtoARR(mat, double**&);
void ARRtoMAT(int, int, mat&, double**);
void VECtoARR(vec, double*&);


extern int linprog1(double**, int, double*, int, double*, int);


int main(){

	cout.precision(6);
	int stop;
	int H = 500;
	int B = 250;
	int nx = 3;
	int ny = 7;
	int l = 1;
	int sc = 275;
	int st = 275;
	int j = 2;
	const int nodes = nx*ny;
	const int elems = nodes*(nodes-1)/2;
	int elem_no = 0;
	double lx;
	double ly;
	double adjacent_distance;
	int addedmem = 0;
	int addedmem_no = 1;
	double disp_size[2];
	Mat<int> N(nodes, 8); // contains node x position, y position, marks supports, marks external loads
	vec dof(2*nodes); // cumulative list of  degrees of freedom
	mat PCL(elems, 4); // first node, second node, distance, accepted

	disp_size[0] = B + 20;
	disp_size[1] = H + 20;
	lx = B/(nx-1);
	ly = H/(ny-1);

	N.zeros();
	PCL.zeros();

	n1234(nodes, ny, nx, ly, lx, N, l); // function for creating N
	PCLf1(elems, nodes, PCL); // function for creating the first 2 elements of PCL
	doff(dof, nodes, N); // Degree of Freedom function
	PCLf2(elems, nodes, PCL, N); // function for 3rd element of PCL
	PCLf3(elems, nodes, PCL, lx, ly, elem_no); // function for 4th

	mat E(elem_no, 4); // active members of PCL

	Ef(E, PCL, nodes, elems); // function for E
	vec nono(N.n_rows);
	for (int i = 0; i< N.n_rows; i++){
		nono(i) = N(i, 0);
	}

	uvec nodes_no = find(nono > 0);

	solverr(N, E, st, sc, j, E.n_rows, nodes_no.size(), dof);

	cin >> stop;
}




void solverr(Mat<int>N, mat E, int st, int sc, int j, int elem_no, int nodes_no, vec dof){
	const double PI = 3.14159265359;
	vec X(elem_no*2); X.zeros();
	mat B(8*elem_no, 3); // sparse matrix
	double n1;
	double n2;
	int kB = 0;
	vec coordinate(2);
	mat sub_matrix(2, 2);
	for (int elem = 0; elem < elem_no; elem ++){
		n1 = E(elem, 0); // finds the first out of the pair of nodes
		n2 = E(elem, 1); // finds the second
		coordinate(0) = (N(n2 - 1, 0) - N(n1 - 1, 0))/E(elem, 2); // change in x over total change
		coordinate(1) = (N(n2 - 1, 1) - N(n1 - 1, 1))/E(elem, 2); // change in y over total change
		for (int i = 0; i<2; i++){
			for (double k = 0; k<2; k++){
				sub_matrix(i, k) = coordinate(i)*(1 - 2*cos(k*PI/2));
			}
		}
		if (sub_matrix(0, 0) != 0){
			B(kB, 0) = n1;
			B(kB, 1) = elem;
			B(kB, 2) = sub_matrix(0, 0);
			//B(n1, elem) = sub_matrix(0, 0);
			kB += 1;
			B(kB, 0) = n2;
			B(kB, 1) = elem;
			B(kB, 2) = -sub_matrix(0, 0);
			//B(n2, elem) = -sub_matrix(0, 0);
			kB += 1;
		}
		if (sub_matrix(1, 0) != 0){
			B(kB, 0) = n1 + nodes_no;
			B(kB, 1) = elem;
			B(kB, 2) = sub_matrix(1, 0);
			//B(n1 + nodes_no, elem) = sub_matrix(1, 0);
			kB += 1;
			B(kB, 0) = n2 + nodes_no;
			B(kB, 1) = elem;
			B(kB, 2) = -sub_matrix(1, 0);
			//B(n2 + nodes_no, elem) = -sub_matrix(1, 0);
			kB += 1;
		}
		if (sub_matrix(0, 1) != 0){
			B(kB, 0) = n1;
			B(kB, 1) = elem + elem_no;
			B(kB, 2) = sub_matrix(0, 1);
			//B(n1, elem + elem_no) = sub_matrix(0, 1);
			kB += 1;
			B(kB, 0) = n2;
			B(kB, 1) = elem + elem_no;
			B(kB, 2) = -sub_matrix(0, 1);
			//B(n2, elem + elem_no) = -sub_matrix(0, 1);
			kB += 1;
		}
		if (sub_matrix(1, 1) != 0){
			B(kB, 0) = n1 + nodes_no;
			B(kB, 1) = elem + elem_no;
			B(kB, 2) = sub_matrix(1, 1);
			//B(n1 + nodes_no, elem + elem_no) = sub_matrix(1, 1);
			kB += 1;
			B(kB, 0) = n1 + nodes_no;
			B(kB, 1) = elem + elem_no;
			B(kB, 2) = -sub_matrix(1, 1);
			//B(n2 + nodes_no, elem + elem_no) = -sub_matrix(1, 1);
			kB += 1;
		}
	}
	vec n3(N.n_rows);
	uvec n5;
	int n7;
	vec n4(N.n_rows);
	uvec n6;
	int n8;
	for (int i = 0; i< N.n_rows; i++){
		n3(i) = N(i, 2);
		n4(i) = N(i, 3);
	}
	n5 = find(n3>0);
	n6 = find(n4>0);
	n7 = n5.size();
	n8 = n6.size();
	for (int i = 0; i<B.n_rows; i++){
		if (B(i, 0) == n7){
			B.shed_row(i);
		}
		if (B(i, 0) == n8 + nodes_no){
			B.shed_row(i);
		}
	}
	int i = 0;
	do {
		if (B(i, 2) <= 0){
			B.shed_row(i);
			i--;
		}
		i++;
	} while (i<B.n_rows);
	for (int i = 0; i<B.n_rows; i++){
	}
	double** Barray = new double*[B.n_rows];
	MATtoARR(B, Barray);

	n5 = find(n3==0);
	n6 = find(n4==0);
	vec f(n3.size()*2);
	vec solverer(n3.size()*2);
	for (int i = 0; i<n3.size(); i++){
		f(i) = N(i, 4);
		f(i + n3.size()) = N(i, 5);
	}
	vec OBJ(elem_no*2);
	for (int i = 1; i<=elem_no; i++){
		OBJ(2*i-2) = 2*j + (E(i-1, 2)/st);
		OBJ(2*i-1) = 2*j + (E(i-1, 2)/sc);	
	}

	//cout << n3.size()*2 << "  " << elem_no*2 << "  " << B.n_rows << endl;

	double* farray = new double[f.size()];
	VECtoARR(f, farray);
	double* objarray = new double[OBJ.size()];
	VECtoARR(OBJ, objarray);

	linprog1(Barray, (int)B.n_rows, farray, (int)f.size(), objarray, (int)OBJ.size());
}
void MATtoARR(mat Matr, double**& Arre){
	for (int i = 0; i<Matr.n_rows; i++){
		Arre[i] = new double(Matr.n_cols);
		for (int k = 0; k<Matr.n_cols; k++){
			Arre[i][k] = Matr(i, k);
		}
	}
}
void VECtoARR(vec Vect, double*& Arre){
	for (int i = 0; i<Vect.size(); i++){
		Arre[i] = Vect(i);
	}
}
void ARRtoMAT(int rows, int cols, mat& Matr, double** Arre){
	for (int i = 0; i<rows; i++){
		for (int k = 0; k<cols; k++){
			Matr(i, k) = Arre[i][k];
		}
	}
}


and


The other one will be uploaded below


I am using the gnu glpk library to calculate a linear program for my matrices.

Does anyone know why I get the error message exit code 3 which apparently means "The system cannot find the path specified"?

Thanks in advance!
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
#include <stdio.h>
#include <iostream>
#include <stdlib.h>
#include <glpk.h>
#include <armadillo>
using namespace std;
using namespace arma;

int linprog1(double** Barray, int rowsb, double* farray, int rowsf, double* objarray, int rowsobj) // rowsb = B.n_rows, 
{ glp_prob *lp;
int* ia = new int[1+rowsb];
int* ja = new int[1+rowsb];
double* ar = new double[1+rowsb];
double z;
double *x = new double[rowsobj];
double *p = new double[rowsf];

lp = glp_create_prob();
glp_set_prob_name(lp, "sample");
//s3: glp_set_obj_dir(lp, GLP_MAX);
glp_add_rows(lp, rowsf);
//glp_set_row_name(lp, 1, "p");
//glp_set_row_bnds(lp, 1, GLP_FX, 100.0, 100.0);
//glp_set_row_name(lp, 2, "q");
//glp_set_row_bnds(lp, 2, GLP_FX, 600.0, 600.0);
//glp_set_row_name(lp, 3, "r");
//glp_set_row_bnds(lp, 3, GLP_FX, 300.0, 300.0);
for (int i = 0; i<rowsf; i++){ // these are the f's
//glp_set_row_name(lp, i+1, "aaaa");
glp_set_row_bnds(lp, i+1, GLP_FX, farray[i], farray[i]); 
}

//glp_add_cols(lp, 3);
glp_add_cols(lp, rowsobj);
//glp_set_col_name(lp, 1, "x1");
//glp_set_col_bnds(lp, 1, GLP_LO, 0.0, 0.0);
//glp_set_obj_coef(lp, 1, 10.0);
//glp_set_col_name(lp, 2, "x2");
//glp_set_col_bnds(lp, 2, GLP_LO, 0.0, 0.0);
//glp_set_obj_coef(lp, 2, 6.0);
//glp_set_col_name(lp, 3, "x3");
//glp_set_col_bnds(lp, 3, GLP_LO, 0.0, 0.0);
//glp_set_obj_coef(lp, 3, 4.0);
for (int i = 0; i<rowsobj; i++){
//glp_set_col_name(lp, i+1, "bbbb");
glp_set_col_bnds(lp, i+1, GLP_LO, 0.0, 0.0);
glp_set_obj_coef(lp, i+1, objarray[i]);
}
//ia[1] = 1, ja[1] = 1, ar[1] = 1.0; /* a[1,1] = 1 */
//ia[2] = 1, ja[2] = 2, ar[2] = 1.0; /* a[1,2] = 1 */
//ia[3] = 1, ja[3] = 3, ar[3] = 1.0; /* a[1,3] = 1 */
//ia[4] = 2, ja[4] = 1, ar[4] = 10.0; /* a[2,1] = 10 */
//ia[5] = 3, ja[5] = 1, ar[5] = 2.0; /* a[3,1] = 2 */
//ia[6] = 2, ja[6] = 2, ar[6] = 4.0; /* a[2,2] = 4 */
//ia[7] = 3, ja[7] = 2, ar[7] = 2.0; /* a[3,2] = 2 */
//ia[8] = 2, ja[8] = 3, ar[8] = 5.0; /* a[2,3] = 5 */
//ia[9] = 3, ja[9] = 3, ar[9] = 6.0; /* a[3,3] = 6 */
for (int i = 0; i<rowsb; i++){
	ia[i+1] = (int)Barray[i][0];
	ja[i+1] = (int)Barray[i][1];
	ar[i+1] = (int)Barray[i][2];
}
//glp_load_matrix(lp, 9, ia, ja, ar);
 glp_load_matrix(lp, rowsobj*rowsf, ia, ja, ar);
glp_simplex(lp, NULL);
z = glp_get_obj_val(lp);
//x1 = glp_get_col_prim(lp, 1);
//x2 = glp_get_col_prim(lp, 2);
//x3 = glp_get_col_prim(lp, 3);
for (int i = 0; i<rowsobj; i++){
x[i] = glp_get_col_prim(lp, i+1);
}
printf("\nz = %g; x1 = %g; x2 = %g; x3 = %g\n",
z);//, x1, x2, x3);
for (int i = 0; i<rowsobj; i++){
printf("x = ", x[i]);
}
glp_delete_prob(lp);
	 int cat;
	 cin >> cat;
return 0;
}
/* eof */
Topic archived. No new replies allowed.