1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
|
#include "Prog03.h"
#include <string>
struct TreeNode
{
ItemType info;
TreeNode* left;
TreeNode* right;
};
struct ItemType
{
string name;
string number;
};
bool TreeType::IsFull() const
// Returns true if there is no room for another item
// on the free store; false otherwise.
{
TreeNode* location;
try
{
location = new TreeNode;
delete location;
return false;
}
catch(std::bad_alloc exception)
{
return true;
}
}
bool TreeType::IsEmpty() const
// Returns true if the tree is empty; false otherwise.
{
return root == NULL;
}
void Retrieve(TreeNode* tree,
ItemType& item, bool& found);
ItemType TreeType::GetItem(ItemType item, bool& found)
// Calls recursive function Retrieve to search the tree for item.
{
Retrieve(root, item, found);
return item;
}
void Retrieve(TreeNode* tree,
ItemType& item, bool& found)
// Recursively searches tree for item.
// Post: If there is an element someItem whose key matches item's,
// found is true and item is set to a copy of someItem;
// otherwise found is false and item is unchanged.
{
if (tree == NULL)
found = false; // item is not found.
else if (item < tree->info)
Retrieve(tree->left, item, found); // Search left subtree.
else if (item > tree->info)
Retrieve(tree->right, item, found);// Search right subtree.
else
{
item = tree->info; // item is found.
found = true;
}
}
void Insert(TreeNode*& tree, ItemType item);
void TreeType::PutItem(ItemType item)
// Calls recursive function Insert to insert item into tree.
{
Insert(root, item);
}
void Insert(TreeNode*& tree, ItemType item)
// Inserts item into tree.
// Post: item is in tree; search property is maintained.
{
if (tree == NULL)
{// Insertion place found.
tree = new TreeNode;
tree->right = NULL;
tree->left = NULL;
tree->info = item;
}
else if (item < tree->info)
Insert(tree->left, item); // Insert in left subtree.
else
Insert(tree->right, item); // Insert in right subtree.
}
void DeleteNode(TreeNode*& tree);
void Delete(TreeNode*& tree, ItemType item);
void TreeType::DeleteItem(ItemType item)
// Calls recursive function Delete to delete item from tree.
{
Delete(root, item);
}
void Delete(TreeNode*& tree, ItemType item)
// Deletes item from tree.
// Post: item is not in tree.
{
if (item < tree->info)
Delete(tree->left, item); // Look in left subtree.
else if (item > tree->info)
Delete(tree->right, item); // Look in right subtree.
else
DeleteNode(tree); // Node found; call DeleteNode.
}
void GetPredecessor(TreeNode* tree, ItemType& data);
void DeleteNode(TreeNode*& tree)
// Deletes the node pointed to by tree.
// Post: The user's data in the node pointed to by tree is no
// longer in the tree. If tree is a leaf node or has only
// non-NULL child pointer the node pointed to by tree is
// deleted; otherwise, the user's data is replaced by its
// logical predecessor and the predecessor's node is deleted.
{
ItemType data;
TreeNode* tempPtr;
tempPtr = tree;
if (tree->left == NULL)
{
tree = tree->right;
delete tempPtr;
}
else if (tree->right == NULL)
{
tree = tree->left;
delete tempPtr;
}
else
{
GetPredecessor(tree->left, data);
tree->info = data;
Delete(tree->left, data); // Delete predecessor node.
}
}
void GetPredecessor(TreeNode* tree, ItemType& data)
// Sets data to the info member of the right-most node in tree.
{
while (tree->right != NULL)
tree = tree->right;
data = tree->info;
}
void PrintTree(TreeNode* tree, std::ofstream& outFile)
// Prints info member of items in tree in sorted order on outFile.
{
if (tree != NULL)
{
PrintTree(tree->left, outFile); // Print left subtree.
outFile << tree->info;
PrintTree(tree->right, outFile); // Print right subtree.
}
}
void TreeType::Print(std::ofstream& outFile) const
// Calls recursive function Print to print items in the tree.
{
PrintTree(root, outFile);
}
TreeType::TreeType()
{
root = NULL;
}
void Destroy(TreeNode*& tree);
TreeType::~TreeType()
// Calls recursive function Destroy to destroy the tree.
{
Destroy(root);
}
void Destroy(TreeNode*& tree)
// Post: tree is empty; nodes have been deallocated.
{
if (tree != NULL)
{
Destroy(tree->left);
Destroy(tree->right);
delete tree;
}
}
void TreeType::MakeEmpty()
{
Destroy(root);
root = NULL;
}
int main()
{
int quit=0;
do //loop that contains a options for the user
{
cout<<"Enter 1 to ADD a number"<<endl;
cout<<"Enter 2 to DELETE a number"<<endl;
cout<<"Enter 3 to FIND a number"<<endl;
cout<<"Enter 4 to PRINT all numbers"<<endl;
cout<<"Enter 5 to QUIT"<<endl;
cin>>quit;
if(quit=1)
{
TreeType PutItem(ItemType item);
}
else if(quit=2)
{
TreeType DeleteItem(ItemType item);
}
else if(quit=3)
{
TreeType GetItem(ItemType item, bool& found);
}
else if(quit=4)
{
TreeType Print(std::ofstream& outFile);
}
else
{
cout<<"Invaild entry. Try again."<<endl;
}
}while (quit!=5);
return 0;
}
|