1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
|
#ifndef LINE_H
#define LINE_H
#include "Point.h"
using namespace std;
class Line
{
public:
//constructors
Line(); //default constructor
//non-default constructor
//copy constructor
//getters and setters
//getStart
//getEnd
//setStart
//setEnd
//other useful methods
//getSlope
//getMidpoint
//print
//distance
private:
//private, helper methods
//getABC
Point start;
Point end;
};
#endif /* LINE_H */
#include <iostream>
#include "Line.h"
using namespace std;
//constructors
Line::Line() //default constructor
{
}
//non-default constructor
//copy constructor
//getters and setters
//getStart
//getEnd
//setStart
//setEnd
//other useful methods
//getSlope
//getMidpoint
//print
//distance
//private, helper methods
//getABC
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include "geom.h"
#include <math.h>
#include <libnr/nr-point-fns.h>
/* Intersect two lines */
/**
* Finds the intersection of the two (infinite) lines
* defined by the points p such that dot(n0, p) == d0 and dot(n1, p) == d1.
*
* If the two lines intersect, then \a result becomes their point of
* intersection; otherwise, \a result remains unchanged.
*/
sp_intersector_kind sp_intersector_line_intersection(NR::Point const &n0, double const d0,
NR::Point const &n1, double const d1,
NR::Point &result) {
/* This function finds the intersection of the two lines (infinite)
* defined by n0.X = d0 and x1.X = d1. The algorithm is as follows:
* To compute the intersection point use kramer's rule:
*
* convert lines to form
* ax + by = c
* dx + ey = f
*
* (
* e.g. a = (x2 - x1), b = (y2 - y1), c = (x2 - x1)*x1 + (y2 - y1)*y1
* )
*
* In our case we use:
* a = n0.x d = n1.x
* b = n0.y e = n1.y
* c = d0 f = d1
*
* so:
*
* adx + bdy = cd
* adx + aey = af
*
* bdy - aey = cd - af
* (bd - ae)y = cd - af
*
* y = (cd - af)/(bd - ae)
*
* repeat for x and you get:
*
* x = (fb - ce)/(bd - ae)
*
* if the denominator (bd-ae) is 0 then the lines are parallel, if the
* numerators are then 0 then the lines coincide. */
double denominator = dot(rot90(n0), n1);
double X = (n1[NR::Y] * d0 -
n0[NR::Y] * d1);
/* X = (-d1, d0) dot (n0[Y], n1[Y]) */
if(denominator == 0) {
if ( X == 0 ) {
return coincident;
} else {
return parallel;
}
}
double Y = (n0[NR::X] * d1 -
n1[NR::X] * d0);
result = NR::Point(X, Y)/denominator;
return intersects;
}
/*
New code which we are not yet using
*/
#ifdef HAVE_NEW_INTERSECTOR_CODE
/* ccw exists as a building block */
static int
sp_intersector_ccw(const NR::Point p0, const NR::Point p1, const NR::Point p2)
/* Determine which way a set of three points winds. */
{
NR::Point d1 = p1 - p0;
NR::Point d2 = p2 - p0;
/* compare slopes but avoid division operation */
double c = dot(rot90(d1), d2);
if(c > 0)
return +1; // ccw - do these match def'n in header?
if(c < 0)
return -1; // cw
/* Colinear [or NaN]. Decide the order. */
if ( ( d1[0] * d2[0] < 0 ) ||
( d1[1] * d2[1] < 0 ) ) {
return -1; // p2 < p0 < p1
} else if ( dot(d1,d1) < dot(d2,d2) ) {
return +1; // p0 <= p1 < p2
} else {
return 0; // p0 <= p2 <= p1
}
}
/** Determine whether two line segments intersect. This doesn't find
the point of intersection, use the line_intersect function above,
or the segment_intersection interface below.
\pre neither segment is zero-length; i.e. p00 != p01 and p10 != p11.
*/
static bool
sp_intersector_segment_intersectp(NR::Point const &p00, NR::Point const &p01,
NR::Point const &p10, NR::Point const &p11)
{
g_return_val_if_fail(p00 != p01, false);
g_return_val_if_fail(p10 != p11, false);
/* true iff ( (the p1 segment straddles the p0 infinite line)
* and (the p0 segment straddles the p1 infinite line) ). */
return ((sp_intersector_ccw(p00,p01, p10)
*sp_intersector_ccw(p00, p01, p11)) <=0 )
&&
((sp_intersector_ccw(p10,p11, p00)
*sp_intersector_ccw(p10, p11, p01)) <=0 );
}
/** Determine whether \& where two line segments intersect.
If the two segments don't intersect, then \a result remains unchanged.
\pre neither segment is zero-length; i.e. p00 != p01 and p10 != p11.
**/
static sp_intersector_kind
sp_intersector_segment_intersect(NR::Point const &p00, NR::Point const &p01,
NR::Point const &p10, NR::Point const &p11,
NR::Point &result)
{
if(sp_intersector_segment_intersectp(p00, p01, p10, p11)) {
NR::Point n0 = (p00 - p01).ccw();
double d0 = dot(n0,p00);
NR::Point n1 = (p10 - p11).ccw();
double d1 = dot(n1,p10);
return sp_intersector_line_intersection(n0, d0, n1, d1, result);
} else {
return no_intersection;
}
}
#endif /* end yet-unused HAVE_NEW_INTERSECTOR_CODE code */
|