1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
|
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <iostream>
using namespace std;
// a structure to represent a weighted edge in graph
struct Edge
{
int src, dest, weight;
};
// a structure to represent a connected, undirected and weighted graph
struct Graph
{
// V-> Number of vertices, E-> Number of edges
int V, E;
struct Edge* edge;
};
// Creates a graph with V vertices and E edges
struct Graph* createGraph(int V, int E)
{
struct Graph* graph = (struct Graph*) malloc(sizeof(struct Graph));
graph->V = V;
graph->E = E;
graph->edge = (struct Edge*) malloc(graph->E * sizeof(struct Edge));
return graph;
}
// A structure to represent a subset for union-find
struct subset
{
int parent;
int rank;
};
// A utility function to find set of an element i
// (uses path compression technique)
int find(struct subset subsets[], int i)
{
// find root and make root as parent of i (path compression)
if (subsets[i].parent != i)
subsets[i].parent = find(subsets, subsets[i].parent);
return subsets[i].parent;
}
// A function that does union of two sets of x and y
// (uses union by rank)
void Union(struct subset subsets[], int x, int y)
{
int xroot = find(subsets, x);
int yroot = find(subsets, y);
// Attach smaller rank tree under root of high rank tree
// (Union by Rank)
if (subsets[xroot].rank < subsets[yroot].rank)
subsets[xroot].parent = yroot;
else if (subsets[xroot].rank > subsets[yroot].rank)
subsets[yroot].parent = xroot;
// If ranks are same, then make one as root and increment
// its rank by one
else
{
subsets[yroot].parent = xroot;
subsets[xroot].rank++;
}
}
// Compare two edges according to their weights.
// Used in qsort() for sorting an array of edges
int myComp(const void* a, const void* b)
{
struct Edge* a1 = (struct Edge*) a;
struct Edge* b1 = (struct Edge*) b;
return a1->weight > b1->weight;
}
// The main function to construct MST using Kruskal's algorithm
void KruskalMST(struct Graph* graph)
{
int V = graph->V;
struct Edge result[V]; // Tnis will store the resultant MST
int e = 0; // An index variable, used for result[]
int i = 0; // An index variable, used for sorted edges
// Step 1: Sort all the edges in non-decreasing order of their weight
// If we are not allowed to change the given graph, we can create a copy of
// array of edges
qsort(graph->edge, graph->E, sizeof(graph->edge[0]), myComp);
// Allocate memory for creating V ssubsets
struct subset *subsets = (struct subset*) malloc(V * sizeof(struct subset));
// Create V subsets with single elements
for (int v = 0; v < V; ++v)
{
subsets[v].parent = v;
subsets[v].rank = 0;
}
// Number of edges to be taken is equal to V-1
while (e < V - 1)
{
// Step 2: Pick the smallest edge. And increment the index
// for next iteration
struct Edge next_edge = graph->edge[i++];
int x = find(subsets, next_edge.src);
int y = find(subsets, next_edge.dest);
// If including this edge does't cause cycle, include it
// in result and increment the index of result for next edge
if (x != y)
{
result[e++] = next_edge;
Union(subsets, x, y);
}
// Else discard the next_edge
}
cout<<"Following are the edges in the constructed MST" << endl;
for (i = 0; i < e; ++i)
cout << result[i].src << " -- " << result[i].dest << " == " << result[i].weight << endl;
return;
}
int main()
{
int V = 9; // Number of vertices in graph
int E = 15; // Number of edges in graph
struct Graph* graph = createGraph(V, E);
// add edge 0-1
graph->edge[0].src = 0;
graph->edge[0].dest = 1;
graph->edge[0].weight = 3;
// add edge 0-2
graph->edge[1].src = 0;
graph->edge[1].dest = 2;
graph->edge[1].weight = 12;
// add edge 0-3
graph->edge[2].src = 0;
graph->edge[2].dest = 3;
graph->edge[2].weight = 26;
// add edge 1-4
graph->edge[3].src = 1;
graph->edge[3].dest = 4;
graph->edge[3].weight = 10;
// add edge 2-3
graph->edge[5].src = 2;
graph->edge[5].dest = 3;
graph->edge[5].weight = 17;
// add edge 2-4
graph->edge[4].src = 2;
graph->edge[4].dest = 4;
graph->edge[4].weight = 7;
// add edge 2-5
graph->edge[6].src = 2;
graph->edge[6].dest = 5;
graph->edge[6].weight = 15;
// add edge 3-5
graph->edge[7].src = 3;
graph->edge[7].dest = 5;
graph->edge[7].weight = 13;
// add edge 3-6
graph->edge[8].src = 3;
graph->edge[8].dest = 6;
graph->edge[8].weight = 14;
// add edge 4-5
graph->edge[9].src = 4;
graph->edge[9].dest = 5;
graph->edge[9].weight = 8;
// add edge 4-7
graph->edge[10].src = 4;
graph->edge[10].dest = 7;
graph->edge[10].weight = 4;
// add edge 5-6
graph->edge[11].src = 5;
graph->edge[11].dest = 6;
graph->edge[11].weight = 9;
// add edge 5-7
graph->edge[12].src = 5;
graph->edge[12].dest = 7;
graph->edge[12].weight = 6;
// add edge 6-7
graph->edge[14].src = 6;
graph->edge[14].dest = 7;
graph->edge[14].weight = 16;
// add edge 6-8
graph->edge[13].src = 6;
graph->edge[13].dest = 8;
graph->edge[13].weight = 11;
KruskalMST(graph);
return 0;
}
|