Program crashes when inserting more numbers into BR Tree

So everything seemed to work fine until I wanted to generate bigger trees with random numbers.

When dealing with numbers from 0 do rand(), the program crashes at bigger arrays (id say 200 is likely to crash, 1000 always crashes) while random numbers from 0 to 9 work most of the time with array of 10, but crashes always at 50 and less.

There is probably something wrong with insertion but I cant figure this out. Would be grateful for help

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
#include <bits/stdc++.h>

#include<stdio.h>
#include<stdlib.h>
#include <iostream>
#include <cstdlib>
#include <ctime>
using namespace std;

enum Color {RED, BLACK};

struct Node
{
    int data;
    bool color;
    Node *left, *right, *parent;

    // Constructor
    Node(int data)
    {
       this->data = data;
       left = right = parent = NULL;
    }
};

// Class to represent Red-Black Tree
class RBTree
{
private:
    Node *root;
protected:
    void rotateLeft(Node *&, Node *&);
    void rotateRight(Node *&, Node *&);
    void fixViolation(Node *&, Node *&);
public:
    // Constructor
    RBTree() { root = NULL; }
    void insert(const int &n);
    void inorder();
    void levelOrder();
   // int heightHelper(Node * n);
   // int max(int x, int y);
    int height();
};

// A recursive function to do level order traversal
void inorderHelper(Node *root)
{
    if (root == NULL)
        return;

    inorderHelper(root->left);
    cout << root->data << "  ";
    inorderHelper(root->right);
}

/* A utility function to insert a new node with given key
   in BST */
Node* BSTInsert(Node* root, Node *pt)
{
    /* If the tree is empty, return a new node */
    if (root == NULL)
       return pt;

    /* Otherwise, recur down the tree */
    if (pt->data < root->data)
    {
        root->left  = BSTInsert(root->left, pt);
        root->left->parent = root;
    }
    else if (pt->data > root->data)
    {
        root->right = BSTInsert(root->right, pt);
        root->right->parent = root;
    }

    /* return the (unchanged) node pointer */
    return root;
}

// Utility function to do level order traversal
void levelOrderHelper(Node *root)
{
    if (root == NULL)
        return;

    std::queue<Node *> q;
    q.push(root);

    while (!q.empty())
    {
        Node *temp = q.front();
        cout << temp->data << "  ";
        q.pop();

        if (temp->left != NULL)
            q.push(temp->left);

        if (temp->right != NULL)
            q.push(temp->right);
    }
}

void RBTree::rotateLeft(Node *&root, Node *&pt)
{
    Node *pt_right = pt->right;

    pt->right = pt_right->left;

    if (pt->right != NULL)
        pt->right->parent = pt;

    pt_right->parent = pt->parent;

    if (pt->parent == NULL)
        root = pt_right;

    else if (pt == pt->parent->left)
        pt->parent->left = pt_right;

    else
        pt->parent->right = pt_right;

    pt_right->left = pt;
    pt->parent = pt_right;
}

void RBTree::rotateRight(Node *&root, Node *&pt)
{
    Node *pt_left = pt->left;

    pt->left = pt_left->right;

    if (pt->left != NULL)
        pt->left->parent = pt;

    pt_left->parent = pt->parent;

    if (pt->parent == NULL)
        root = pt_left;

    else if (pt == pt->parent->left)
        pt->parent->left = pt_left;

    else
        pt->parent->right = pt_left;

    pt_left->right = pt;
    pt->parent = pt_left;
}

// This function fixes violations caused by BST insertion
void RBTree::fixViolation(Node *&root, Node *&pt)
{
    Node *parent_pt = NULL;
    Node *grand_parent_pt = NULL;

    while ((pt != root) && (pt->color != BLACK) &&
           (pt->parent->color == RED))
    {

        parent_pt = pt->parent;
        grand_parent_pt = pt->parent->parent;

        /*  Case : A
            Parent of pt is left child of Grand-parent of pt */
        if (parent_pt == grand_parent_pt->left)
        {

            Node *uncle_pt = grand_parent_pt->right;

            /* Case : 1
               The uncle of pt is also red
               Only Recoloring required */
            if (uncle_pt != NULL && uncle_pt->color == RED)
            {
                grand_parent_pt->color = RED;
                parent_pt->color = BLACK;
                uncle_pt->color = BLACK;
                pt = grand_parent_pt;
            }

            else
            {
                /* Case : 2
                   pt is right child of its parent
                   Left-rotation required */
                if (pt == parent_pt->right)
                {
                    rotateLeft(root, parent_pt);
                    pt = parent_pt;
                    parent_pt = pt->parent;
                }

                /* Case : 3
                   pt is left child of its parent
                   Right-rotation required */
                rotateRight(root, grand_parent_pt);
                swap(parent_pt->color, grand_parent_pt->color);
                pt = parent_pt;
            }
        }

        /* Case : B
           Parent of pt is right child of Grand-parent of pt */
        else
        {
            Node *uncle_pt = grand_parent_pt->left;

            /*  Case : 1
                The uncle of pt is also red
                Only Recoloring required */
            if ((uncle_pt != NULL) && (uncle_pt->color == RED))
            {
                grand_parent_pt->color = RED;
                parent_pt->color = BLACK;
                uncle_pt->color = BLACK;
                pt = grand_parent_pt;
            }
            else
            {
                /* Case : 2
                   pt is left child of its parent
                   Right-rotation required */
                if (pt == parent_pt->left)
                {
                    rotateRight(root, parent_pt);
                    pt = parent_pt;
                    parent_pt = pt->parent;
                }

                /* Case : 3
                   pt is right child of its parent
                   Left-rotation required */
                rotateLeft(root, grand_parent_pt);
                swap(parent_pt->color, grand_parent_pt->color);
                pt = parent_pt;
            }
        }
    }

    root->color = BLACK;
}

// Function to insert a new node with given data
void RBTree::insert(const int &data)
{
    Node *pt = new Node(data);

    // Do a normal BST insert
    root = BSTInsert(root, pt);

    // fix Red Black Tree violations
    fixViolation(root, pt);
}

int heightHelper(Node * n){
        if ( n == NULL ){
            return -1;
        }
        else{
            return max(heightHelper(n->left), heightHelper(n->right)) + 1;
        }
    }

int max(int x, int y){
    if (x >= y){
        return x;
    }
    else{
        return y;
    }
}

// Function to do inorder and level order traversals
void RBTree::inorder()     {  inorderHelper(root);}
void RBTree::levelOrder()  {  levelOrderHelper(root); }
int RBTree::height() { heightHelper(root);}

// Driver Code
int main()
{

    srand ( time(0) );
    RBTree tree;
    RBTree tree2;


    int n = 100;

    int tab[n];

    for(int i = 0; i < n; i++){
        tab[i] = rand();
    }

    tree.insert(tab[0]);

    for(int i = 1; i < n; i++){
        tree.insert(tab[i]);
    }

    //second tree

    int m = 50;

    int tab2[m];

    for(int i = 0; i < m; i++){
        tab2[i] = rand()%10;
        cout << tab2[i] << endl;
        tree2.insert(tab2[i]);
    }

       tree2.insert(tab2[0]);

    for(int i = 1; i < m; i++){
        tree.insert(tab2[i]);
    }


    cout << endl;


    return 0;
}
$ gdb a.out
(gdb) run
6
0
1
1

Program received signal SIGSEGV, Segmentation fault.
0x000055555555abdc in RBTree::fixViolation (this=0x7fffffffe100, root=@0x7fffffffe100: 0x55555577aee0, 
    pt=@0x7fffffffdfd0: 0x55555577af10)
		while((pt != root) && (pt->color != BLACK) && (pt->parent->color == RED)) {
(gdb) print *pt
$1 = {
  data = 1, 
  color = false, 
  left = 0x0, 
  right = 0x0, 
  parent = 0x0
}
notice that pt has no parent set.
looking at `.BSTInsert()', you don't handle duplicates
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
Node *BSTInsert(Node *root, Node *pt) {
	/* If the tree is empty, return a new node */
	if(root == NULL)
		return pt;

	/* Otherwise, recur down the tree */
	if(pt->data < root->data) {
		root->left = BSTInsert(root->left, pt);
		root->left->parent = root;
	} else if(pt->data > root->data) {
		root->right = BSTInsert(root->right, pt);
		root->right->parent = root;
	}
	//else pt->data == root->data, pt->parent not set

	/* return the (unchanged) node pointer */
	return root;
}

Node's constructor needs to set the color.
And youre right, I overlooked the duplicates... When I was implementing AVL tree i didnt handle duplicates on purpose because they could eventually violate the AVL tree when parent and left + right are the same number. Somehow I thought that would be the same case, but no, RB tree has other rules, and thats the colors that matter, and those can be swapped. thank you
Topic archived. No new replies allowed.