1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
|
#include <bits/stdc++.h>
#include<stdio.h>
#include<stdlib.h>
#include <iostream>
#include <cstdlib>
#include <ctime>
using namespace std;
enum Color {RED, BLACK};
struct Node
{
int data;
bool color;
Node *left, *right, *parent;
// Constructor
Node(int data)
{
this->data = data;
left = right = parent = NULL;
}
};
// Class to represent Red-Black Tree
class RBTree
{
private:
Node *root;
protected:
void rotateLeft(Node *&, Node *&);
void rotateRight(Node *&, Node *&);
void fixViolation(Node *&, Node *&);
public:
// Constructor
RBTree() { root = NULL; }
void insert(const int &n);
void inorder();
void levelOrder();
// int heightHelper(Node * n);
// int max(int x, int y);
int height();
};
// A recursive function to do level order traversal
void inorderHelper(Node *root)
{
if (root == NULL)
return;
inorderHelper(root->left);
cout << root->data << " ";
inorderHelper(root->right);
}
/* A utility function to insert a new node with given key
in BST */
Node* BSTInsert(Node* root, Node *pt)
{
/* If the tree is empty, return a new node */
if (root == NULL)
return pt;
/* Otherwise, recur down the tree */
if (pt->data < root->data)
{
root->left = BSTInsert(root->left, pt);
root->left->parent = root;
}
else if (pt->data > root->data)
{
root->right = BSTInsert(root->right, pt);
root->right->parent = root;
}
/* return the (unchanged) node pointer */
return root;
}
// Utility function to do level order traversal
void levelOrderHelper(Node *root)
{
if (root == NULL)
return;
std::queue<Node *> q;
q.push(root);
while (!q.empty())
{
Node *temp = q.front();
cout << temp->data << " ";
q.pop();
if (temp->left != NULL)
q.push(temp->left);
if (temp->right != NULL)
q.push(temp->right);
}
}
void RBTree::rotateLeft(Node *&root, Node *&pt)
{
Node *pt_right = pt->right;
pt->right = pt_right->left;
if (pt->right != NULL)
pt->right->parent = pt;
pt_right->parent = pt->parent;
if (pt->parent == NULL)
root = pt_right;
else if (pt == pt->parent->left)
pt->parent->left = pt_right;
else
pt->parent->right = pt_right;
pt_right->left = pt;
pt->parent = pt_right;
}
void RBTree::rotateRight(Node *&root, Node *&pt)
{
Node *pt_left = pt->left;
pt->left = pt_left->right;
if (pt->left != NULL)
pt->left->parent = pt;
pt_left->parent = pt->parent;
if (pt->parent == NULL)
root = pt_left;
else if (pt == pt->parent->left)
pt->parent->left = pt_left;
else
pt->parent->right = pt_left;
pt_left->right = pt;
pt->parent = pt_left;
}
// This function fixes violations caused by BST insertion
void RBTree::fixViolation(Node *&root, Node *&pt)
{
Node *parent_pt = NULL;
Node *grand_parent_pt = NULL;
while ((pt != root) && (pt->color != BLACK) &&
(pt->parent->color == RED))
{
parent_pt = pt->parent;
grand_parent_pt = pt->parent->parent;
/* Case : A
Parent of pt is left child of Grand-parent of pt */
if (parent_pt == grand_parent_pt->left)
{
Node *uncle_pt = grand_parent_pt->right;
/* Case : 1
The uncle of pt is also red
Only Recoloring required */
if (uncle_pt != NULL && uncle_pt->color == RED)
{
grand_parent_pt->color = RED;
parent_pt->color = BLACK;
uncle_pt->color = BLACK;
pt = grand_parent_pt;
}
else
{
/* Case : 2
pt is right child of its parent
Left-rotation required */
if (pt == parent_pt->right)
{
rotateLeft(root, parent_pt);
pt = parent_pt;
parent_pt = pt->parent;
}
/* Case : 3
pt is left child of its parent
Right-rotation required */
rotateRight(root, grand_parent_pt);
swap(parent_pt->color, grand_parent_pt->color);
pt = parent_pt;
}
}
/* Case : B
Parent of pt is right child of Grand-parent of pt */
else
{
Node *uncle_pt = grand_parent_pt->left;
/* Case : 1
The uncle of pt is also red
Only Recoloring required */
if ((uncle_pt != NULL) && (uncle_pt->color == RED))
{
grand_parent_pt->color = RED;
parent_pt->color = BLACK;
uncle_pt->color = BLACK;
pt = grand_parent_pt;
}
else
{
/* Case : 2
pt is left child of its parent
Right-rotation required */
if (pt == parent_pt->left)
{
rotateRight(root, parent_pt);
pt = parent_pt;
parent_pt = pt->parent;
}
/* Case : 3
pt is right child of its parent
Left-rotation required */
rotateLeft(root, grand_parent_pt);
swap(parent_pt->color, grand_parent_pt->color);
pt = parent_pt;
}
}
}
root->color = BLACK;
}
// Function to insert a new node with given data
void RBTree::insert(const int &data)
{
Node *pt = new Node(data);
// Do a normal BST insert
root = BSTInsert(root, pt);
// fix Red Black Tree violations
fixViolation(root, pt);
}
int heightHelper(Node * n){
if ( n == NULL ){
return -1;
}
else{
return max(heightHelper(n->left), heightHelper(n->right)) + 1;
}
}
int max(int x, int y){
if (x >= y){
return x;
}
else{
return y;
}
}
// Function to do inorder and level order traversals
void RBTree::inorder() { inorderHelper(root);}
void RBTree::levelOrder() { levelOrderHelper(root); }
int RBTree::height() { heightHelper(root);}
// Driver Code
int main()
{
srand ( time(0) );
RBTree tree;
RBTree tree2;
int n = 100;
int tab[n];
for(int i = 0; i < n; i++){
tab[i] = rand();
}
tree.insert(tab[0]);
for(int i = 1; i < n; i++){
tree.insert(tab[i]);
}
//second tree
int m = 50;
int tab2[m];
for(int i = 0; i < m; i++){
tab2[i] = rand()%10;
cout << tab2[i] << endl;
tree2.insert(tab2[i]);
}
tree2.insert(tab2[0]);
for(int i = 1; i < m; i++){
tree.insert(tab2[i]);
}
cout << endl;
return 0;
}
|