Polynomial Class Implementation Issue
Oct 8, 2016 at 3:55pm UTC
Hello. I'm currently having issues with one of my programs and I can't figure out why it doesn't work. I have tried different variations of my code, and other ways of doing it and it still won't work.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
#ifndef __POLYNOMIAL_CPP__
#define __POLYNOMIAL_CPP__
#include "polynomial.h"
#include <iostream>
#include <list>
using namespace std;
//copy assignment
template <typename NumberType>
/*Done*/ const Polynomial<NumberType> & Polynomial<NumberType>::operator =(const Polynomial<NumberType> & rhs) {
if (this != &rhs) {
term_list = rhs.term_list;
highest_degree = rhs.highest_degree;
number_of_terms = rhs.number_of_terms;
}
return *this ;
}
//binary math function things start//
template <typename NumberType>
/*Done*/ Polynomial<NumberType> Polynomial<NumberType>::operator +=(const Monomial<NumberType> &m) {
insert_in_poly(*this , m);
return *this ;
}
template <typename NumberType>
/*Done*/ Polynomial<NumberType> Polynomial<NumberType>::operator +=(const Polynomial<NumberType> & rhs) {
Polynomial<NumberType> sumTemp;
list<Monomial<NumberType>>::const_iterator listItr = term_list.begin();
while (!(*listItr).end()) {
sumTemp += rhs.*listItr;
}
*this = sumTemp;
return *this ;
}
template <typename NumberType>
/*Done*/ const Polynomial<NumberType> Polynomial<NumberType>::operator + (const Monomial<NumberType> &m)const {
return Polynomial(*this ) += m;
}
template <typename NumberType>
/*Done*/ const Polynomial<NumberType> Polynomial<NumberType>::operator + (const Polynomial<NumberType> & rhs) const {
return Polynomial(*this ) += rhs;
}
template <typename NumberType>
Polynomial<NumberType> Polynomial<NumberType>::operator -=(const Monomial<NumberType> &m) {
insert_in_poly(*this , m);
}
template <typename NumberType>
Polynomial<NumberType> Polynomial<NumberType>::operator -=(const Polynomial<NumberType> & rhs) {
}
template <typename NumberType>
/*Done*/ const Polynomial<NumberType> Polynomial<NumberType>::operator -(const Monomial<NumberType> &m)const {
return Polynomial(*this ) -= m;
}
template <typename NumberType>
/*Done*/ const Polynomial<NumberType> Polynomial<NumberType>::operator - (const Polynomial<NumberType> & rhs) const {
return Polynomial(*this ) -= rhs;
}
template <typename NumberType>
Polynomial<NumberType> Polynomial<NumberType>::operator *=(const Monomial<NumberType> &m) {
insert_in_poly(*this , m);
}
template <typename NumberType>
Polynomial<NumberType> Polynomial<NumberType>::operator *=(const Polynomial<NumberType> & rhs) {
}
template <typename NumberType>
/*Done*/ const Polynomial<NumberType> Polynomial<NumberType>::operator *(const Monomial<NumberType> &m) const {
return (*this ) *= m;
}
template <typename NumberType>
/*Done*/ const Polynomial<NumberType> Polynomial<NumberType>::operator *(const Polynomial<NumberType> &rhs)const {
return (*this ) *= rhs;
}
//binary math function things end//
//evaluate things
template <typename NumberType>
const NumberType Polynomial<NumberType>::evaluate(NumberType x) const {
}
//bool operators
template <typename NumberType>
/*Done*/ bool Polynomial<NumberType>::operator ==(const Polynomial<NumberType> &p) const {
return (number_of_terms == p.number_of_terms && highest_degree == p.highest_degree);
}
template <typename NumberType>
/*Done*/ bool Polynomial<NumberType>::operator !=(const Polynomial<NumberType> &p) const {
return (number_of_terms != p.number_of_terms || highest_degree != p.highest_degree);
}
//Read and Print Functions
template <typename NumberType>
void Polynomial<NumberType>::read(istream & in = cin) {
Monomial<NumberType> newMonom;
int coeff;
int degree;
while (true ) {
in >> coeff;
in >> degree;
if (coeff == 0) {
break ;
}
else if (degree < 0) {
cout << "No negatives, no bueno." ;
break ;
}
else {
newMonom.assign_coefficient(coeff);
newMonom.assign_degree(degree);
insert_in_poly(*this , newMonom);
}
}
return ;
}
template <typename NumberType>
void Polynomial<NumberType>::print(ostream & out = cout) const {
Monomial<NumberType> mono;
list<Monomial<NumberType>>::const_iterator listItr = term_list.begin();
while (listItr != term_list.end()) {
if ((*listItr).coefficient() == 0) {
break ;
}
else if ((*listItr).degree() == 0 && (*listItr).coefficient() > 0) {
out << " + " << (*listItr).coefficient();
if (listItr == term_list.end()) {
break ;
}
}
else if ((*listItr).degree() == 0 && (*listItr).coefficient() < 0) {
out << " - " << (*listItr).coefficient();
if (listItr == term_list.end()) {
break ;
}
}
else if ((*listItr).degree() == 1 && (*listItr).coefficient() > 0) {
out << " + " << (*listItr).coefficient() << 'x' ;
}
else if ((*listItr).degree() == 1 && (*listItr).coefficient() < 0) {
out << " - " << (*listItr).coefficient() << 'x' ;
}
else if ((*listItr).coefficient() > 0 && (*listItr).degree() != 0){
out << " + " << (*listItr).coefficient() << "x^" << (*listItr).degree();
}
else if ((*listItr).coefficient() < 0 && (*listItr).degree() != 0) {
out << " - " << (*listItr).coefficient() << "x^" << (*listItr).degree();
}
else if (gethighestdegree() && (*listItr).coefficient() > 0) {
out << (*listItr).coefficient() << "x^" << (*listItr).degree();
}
else if (gethighestdegree() && (*listItr).coefficient() < 0) {
out << "- " << (*listItr).coefficient() << "x^" << (*listItr).degree();
}
}
// if degree == 1 print x
//if degree == 0 print coeff
//else print coeff x^ degree
return ;
}
//Insert Monomial into Polynomial
template <typename NumberType>
/*Done*/ void Polynomial<NumberType>::insert_in_poly(Polynomial<NumberType> & p, const Monomial<NumberType> & m) {
int m_degree = m.degree();
if (p == Polynomial<NumberType>::ZERO) {
p.term_list.pop_front(); //get rid of (0, 0) term
p.term_list.push_front(m);
p.highest_degree = m.degree();
p.number_of_terms = 1;
}
else {
list<Monomial<NumberType>>::iterator itr = p.term_list.begin();
while (itr != p.term_list.end()) {
Monomial<NumberType> current_m = *itr;
if (current_m == m_degree) {
if ((current_m.coefficient() + m.coefficient()) == 0) {
itr = p.term_list.erase(itr);
p.number_of_terms--;
if (p.number_of_terms == 0) {
p.highest_degree = 0;
p.term_list.push_back(Monomial<NumberType>(0, 0));
}
else {
if (p.highest_degree == m_degree) {
p.highest_degree = (*itr).degree();
}
}
}
else {
(*itr).assign_coefficient(current_m.coefficient() + m.coefficient());
}
return ;
}
}
}
}
//Power Function
template <typename NumberType>
/*Done*/ NumberType Polynomial<NumberType>::power(NumberType x, int n) const {
NumberType product;
for (int i = 0; i < n; i++) {
product *= x;
}
return product;
}
//istream and ostream operators
template <typename NumberType>
/*Done*/ istream& operator >>(istream & in, Polynomial<NumberType> & rhs) {
rhs.read(in);
return in;
}
template <typename NumberType>
/*Done*/ ostream& operator <<(ostream & out, const Polynomial<NumberType> & rhs) {
rhs.print(out);
return out;
}
#endif
I am having a problem with my print and read functions (mostly the print function), because trying to print everything will go into an infinite loop and putting breaks only prints up to 2 monomials. Can someone explain what is wrong with them? My insert_in_poly works because my professor gave it to us in class.
1 2 3 4 5 6 7 8 9 10 11 12 13 14
//Main Driver Code
#include "polynomial.cpp"
#include <iostream>
using namespace std;
int main() {
Polynomial<int > a(9, 3);
Polynomial<int > c;
cin >> c;
cout << a << endl;
cout << c << endl;
return 0;
}
Topic archived. No new replies allowed.