1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
|
#include <iostream>
#include <fstream>
#include <iomanip>
#include <iostream>
#include <algorithm>
#include <string>
#include <cctype>
#include <cstring>
#include <sstream>
using namespace std;
//#define MAX = 10;
int** getPolynomial(string polynomial, int &count, string Exponent[], string Coefficient[], int polyArray[][2]){
for (int i, i = 0; i<100; i++){
for (int n, n = 0; n<100; n++){
Exponent[n] = atoi(polyArray[n][1]);
}
Coefficient[i] = atoi(polyArray[i][0]);
}
}
int** add(int **left, int leftCount, int **right, int countRight, int &countResult);
int** subtract(int **left, int leftCount, int **right, int countRight, int &countResult);
int** mutliply(int **left, int leftCount, int **right, int countRight, int &countResult);
int split(string polynomial, char delim, string *&newPoly){
int wordCount = 0;
int start = 0;
int pos = polynomial.find(delim, start);
newPoly = new string[20];
while (pos != string::npos){
newPoly[wordCount++] = polynomial.substr(start, pos - start);
start = pos + 1;
pos = polynomial.find(delim, start);
}//end while
newPoly[wordCount++] = polynomial.substr(start, polynomial.length());
return wordCount;
}
//
//The following void function searches for all instances of subtraction within the split left/right polynomial and replaces
//them with the addition of a negative. This is to simplify the code for splitting the polynomial into its components
//(so as to eliminate the need to search for both addition and subtraction).
//
//This also should allow the program to easily determine and split negative coefficients
//and not erroneously convert them to positives
//
//This does not alter the ORIGINAL polynomial string, so as to keep the addition/subtraction functions separate
//
void replaceMinus(string &polynomial, string minus, string add){
int start = 0;
int pos = polynomial.find(minus, start);
while (pos != string::npos){
polynomial.replace(pos, minus.length(), add);
start = pos + minus.length();
pos = polynomial.find(minus, start);
}
}
int main(){
//ifstream in;
//in.open("polynomial.txt");
string thepolynomial = "(x^4+3x^2+6)+(2x^4- 3x^3+8)";
//in >> thepolynomial;
string *poly1;
cout << "poly" << thepolynomial;
int count = split(thepolynomial, ')', poly1);
poly1[0] = poly1[0].substr(1, poly1[0].length());
poly1[1] = poly1[1].substr(2, poly1[1].length());
//cout << poly1[0] << endl;
//cout << poly1[1] << endl;
//
//The above commands are for testing purposes
string leftPoly = poly1[0];
string rightPoly = poly1[1];
replaceMinus(leftPoly, "- ", "+-");
replaceMinus(rightPoly, "- ", "+-");
string *poly2;
string *poly3;
int countLeftSecond = split(leftPoly, '+', poly2);
int countRightSecond = split(rightPoly, '+', poly3);
//The below section of 'cout' commands is for testing purposes.
//
//cout << "leftPoly:" << poly2[0] << endl;
//cout << poly2[1] << endl;
//cout << poly2[2] << endl;
//cout << "RightPoly:" << endl;
//cout << poly3[0] << endl;
//cout << poly3[1] << endl;
//cout << poly3[2] << endl;
//cout << poly3[3] << endl;
//
//lt# = left term #; rt# = right term #; lc# = left coefficient #; rc# = right coefficient #
//Up to 7 terms currently coded for
//
string *lt0;
string *lt1;
string *lt2;
string *lt3;
string *lt4;
string *lt5;
string *lt6;
string *lt7;
string *rt0;
string *rt1;
string *rt2;
string *rt3;
string *rt4;
string *rt5;
string *rt6;
string *rt7;
string *lc0;
string *lc1;
string *lc2;
string *lc3;
string *lc4;
string *lc5;
string *lc6;
string *lc7;
string *rc0;
string *rc1;
string *rc2;
string *rc3;
string *rc4;
string *rc5;
string *rc6;
string *rc7;
//This could probably be a for/while loop
//However, I have no idea how to go about structuring one for this purpose.
//
int countLeftThird = split(poly2[0], '^', lt0);
int countLeftFourth0 = split(lt0[0], 'x', lc0); //Splits the x from the term
int countRightThird = split(poly3[0], '^', rt0);
int countRightFourth0 = split(rt0[0], 'x', rc0); //Splits the x from the term
int countLeftThird1 = split(poly2[1], '^', lt1);
int countLeftFourth1 = split(lt1[0], 'x', lc1); //Splits the x from the term
int countRightThird1 = split(poly3[1], '^', rt1);
int countRightFourth1 = split(rt1[0], 'x', rc1); //Splits the x from the term
int countLeftThird2 = split(poly2[2], '^', lt2);
int countLeftFourth2 = split(lt2[0], 'x', lc2); //Splits the x from the term
int countRightThird2 = split(poly3[2], '^', rt2);
int countRightFourth2 = split(rt2[0], 'x', rc2); //Splits the x from the term
int countLeftThird3 = split(poly2[3], '^', lt3);
int countLeftFourth3 = split(lt3[0], 'x', lc3); //Splits the x from the term
int countRightThird3 = split(poly3[3], '^', rt3);
int countRightFourth3 = split(rt3[0], 'x', rc3); //Splits the x from the term
int countLeftThird4 = split(poly2[4], '^', lt4);
int countLeftFourth4 = split(lt4[0], 'x', lc4); //Splits the x from the term
int countRightThird4 = split(poly3[4], '^', rt4);
int countRightFourth4 = split(rt4[0], 'x', rc4); //Splits the x from the term
int countLeftThird5 = split(poly2[5], '^', lt5);
int countLeftFourth5 = split(lt5[0], 'x', lc5); //Splits the x from the term
int countRightThird5 = split(poly3[5], '^', rt5);
int countRightFourth5 = split(rt5[0], 'x', rc5); //Splits the x from the term
int countLeftThird6 = split(poly2[6], '^', lt6);
int countLeftFourth6 = split(lt6[0], 'x', lc6); //Splits the x from the term
int countRightThird6 = split(poly3[6], '^', rt6);
int countRightFourth6 = split(rt6[0], 'x', rc6); //Splits the x from the term
int countLeftThird7 = split(poly2[7], '^', lt7);
int countLeftFourth7 = split(lt7[0], 'x', lc7); //Splits the x from the term
int countRightThird7 = split(poly3[7], '^', rt7);
int countRightFourth7 = split(rt7[0], 'x', rc7); //Splits the x from the term
string *leftArray[7]; //The array containing the Coefficients of the Left
string *leftArrayEx[7]; //Array containing the Exponents of the Left
string *rightArray[7]; //Contains Coefficients of the Right
string *rightArrayEx[7]; //Contains Exponents of Right
leftArray[7] = lc0;
leftArray[6] = lc1;
leftArray[5] = lc2;
leftArray[4] = lc3;
leftArray[3] = lc4;
leftArray[2] = lc5;
leftArray[1] = lc6;
leftArray[0] = lc7;
leftArrayEx[7] = lt0;
leftArrayEx[6] = lt1;
leftArrayEx[5] = lt2;
leftArrayEx[4] = lt3;
leftArrayEx[3] = lt4;
leftArrayEx[2] = lt5;
leftArrayEx[1] = lt6;
leftArrayEx[0] = lt7;
//
//Above sets up arrays for the Coefficients and Exponents of the Left
//Below does the same for the Right
//Sets up four total arrays: RightCoeff, Left Coeff, Right Expon, Left Expon
//
rightArray[7] = rc0;
rightArray[6] = rc1;
rightArray[5] = rc2;
rightArray[4] = rc3;
rightArray[3] = rc4;
rightArray[2] = rc5;
rightArray[1] = rc6;
rightArray[0] = rc7;
rightArrayEx[7] = rt0;
rightArrayEx[6] = rt1;
rightArrayEx[5] = rt2;
rightArrayEx[4] = rt3;
rightArrayEx[3] = rt4;
rightArrayEx[2] = rt5;
rightArrayEx[1] = rt6;
rightArrayEx[0] = rt7;
//cout << "Poly and Exponent:" << endl;
//cout << "Coeff: " << lc1[0] << endl;
//cout << "Expon: " << lt1[1] << endl;
//
//The above commands are for testing purposes
int leftPolyArray[10][2];
int rightPolyArray[10][2];
}
|