1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
|
#include <iostream>
#include <algorithm>
#include <cassert>
#include <cstdlib>
#include <ctime>
#include <stack>
#include <typeinfo>
#include <string>
using namespace std;
template <class T>
class container
{
template <class T1>
friend ostream& operator<<(ostream& out, container<T1> &);
// Postcondition: displays # of values stored in the container, storage
// capacity of the contianer, and stored values in the container .
//
public:
container();
// Postcondition: set dynamic storage capacity to 1 and count to -1 where (count + 1)
void insert(T);
// Postcondition: if the container is not full, the value passed to the function
// is stored in the first available element of the dynamic array.
// Otherwise the function calls the private "allocate" member function
// requesting a new set of dynamic memory with twice the previous storage capacity
// the insert function then increments count by 1 and insert the value into the new and larger array.
void remove();
// Precondition: the data array must not be empty; i.e., count must be greater than or equal to 0.
// Postcondition: if the container is not empty, then remove the most recently stored value ifrom the container and
// decrement count by 1; otherwise, display the message "The container is empty; no action is taken!"
T operator[](T sub);
// Precondition: value passed to the function must be a positive integer including 0
// Postcondition: the value of stored in data[sub] is returned; if sub is out of range,
// display a message and terminate the program .
bool isFull();
// Postcondition: return true if the container is full; return false otherwise
bool isEmpty();
// Postcondition: return true if the container is empty; return false otherwise
T Capacity();
// Notice uppercase 'C' to avoid conflict with data member named "capacity"
// Postcondition: returns the current storage capacity of the container
T size();
// Postcondition: returns the # of elements (# of objects) currently stored in the container
void resize(T n);
// Postcondition: container is resized to n; contents of existing container have been copied to the new array;
// old array is deleted to avoid memory leak.
protected:
void allocate();
// Postcondition: 1) the capacity of the container has been doubled, 2) existing values in the existing array have been copied to
// the new and larger dynamic array, 3) memory of the old array has been deleted (returned to "heap").
const static int CAPACITY = 10;
T data[CAPACITY];
int capacity; // indicates the storage capcity of the container, i.e., the size of the dynamic array
int count; // used as a subscript to index into the array; size = count + 1
};
template <class T>
container<T>::container()
{
capacity = 1;
count = -1; // container is empty
}
template <class T>
void container<T>::insert(T value)
{
if (!isFull())
{
data[++count] = value;
}
else
{
count = count + 1;
}
}
template <class T>
void container<T>::remove()
{
if(!isEmpty())
{
for (int i = 0; i < capacity; i++)
{
--count;
}
}
else
cout << "Container is empty!" << endl;
}
template <class T>
T container<T>::operator[](T sub)
{
if(sub <= capacity)
{
return data[sub];
}
else
{
cout << endl << "Sub is out of range; program is terminated!";
exit(1);
}
}
template <class T>
bool container<T>::isFull()
{
if (count != capacity)
return false;
else
return true;
}
template <class T>
bool container<T>::isEmpty()
{
if (count == -1)
return true;
else
return false;
}
template <class T>
T container<T>::Capacity()
{
return capacity;
}
template <class T>
T container<T>::size()
{
return count + 1;
}
template <class T>
void container<T>::resize(T n)
{
int *temptr;
capacity = n;
temptr = new int[n + 1];
if(n > count + 1)
{
for(int i = 0; i < count + 1; i++)
temptr[i] = data[i];
for(int i = count + 1; i < n; i++)
temptr[i] = int();
}
else
{
for(int i = 0; i < n; i++)
temptr[i] = data[i];
}
}
template <class T1>
ostream& operator<<(ostream& out, container<T1> &c)
{
out << "Container capacity = " << c.Capacity();
out << " Size or actual # of values stored in the container = " << c.size() << endl;
out << "Contents of the container = ";
if(c.isEmpty() == true)
{
out << "empty!";
}
else
{
for(int i = 0; i < c.count + 1; i++)
out << c.data[i] << " ";
}
return out;
}
template <class T>
void container<T>::allocate()
{
capacity = capacity * 2;
resize(capacity);
}
template <class T>
class Stack : protected container<int>
{
public:
Stack();
void push(T);
T top();
void pop();
bool empty();
bool full();
void erase();
};
template <class T>
Stack<T>::Stack() : container<int>()
{
}
template <class T>
void Stack<T>::push(T n)
{
insert(n);
}
template <class T>
T Stack<T>::top()
{
if(!isEmpty())
return data[count];
else
{
cout << "Stack is empty!" << endl;
return -99;
}
}
template <class T>
void Stack<T>::pop()
{
if(!isEmpty())
remove();
else
{
cout << "Stack is empty! Program terminated!" << endl;
system("PAUSE");
exit(1);
}
}
template <class T>
bool Stack<T>::empty()
{
return isEmpty();
}
template <class T>
bool Stack<T>::full()
{
return isFull();
}
template <class T>
void Stack<T>::erase()
{
while(!empty())
{
cout << top() << " has been removed from the stack!" << endl;
pop();
}
}
char genRandom()
{
static const char alphanum[] =
"0123456789"
"!@#$%^&*"
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
"abcdefghijklmnopqrstuvwxyz";
int stringLength = sizeof(alphanum) - 1;
return alphanum[rand() % stringLength];
}
template <class T>
void writeStack(T& stk)
{
if (stk.empty())
cout << "stack is empty!";
else
{
cout << "stack is not empty!" << endl;
cout << endl;
cout << "We now pop 5 times";
cout << endl << endl;
for(int i = 0; i < 5; i++)
{
cout << stk.top() << " has been pushed off of the stack" << endl;
cout << endl;
stk.pop();
}
}
}
int main()
{
Stack<int> stk;
if (stk.empty())
cout << "stack is empty!";
else
cout << "stack is not empty!" << endl;
stk.push(11);
cout << endl << stk.top() << " has been pushed on top " << endl;
if (stk.empty())
cout << "stack is empty!";
else
cout << "stack is not empty!" << endl;
cout << "We now perform the pop operation:" << endl;
cout << stk.top();
stk.pop();
cout << endl;
if (stk.empty())
cout << "stack is empty!";
else
cout << "stack is not empty!" << endl;
srand(static_cast<unsigned int> (time(0)));
cout << "we now push 5 random int numbers onto empty stack " << endl;
for(int i = 0; i < 5; i++)
{
stk.push(rand() % 99 +1);
cout << stk.top() << " has been pushed onto the stack," << endl;
}
writeStack(stk);
Stack<char> stk2;
srand(static_cast<unsigned char> (time(0)));
cout << "we now push 10 random char letters onto empty stack " << endl;
for(int i = 0; i < 10; i++)
{
char c;
c = (rand() % 26 + 65);
stk.push(c);
}
writeStack(stk2);
system("PAUSE");
return 0;
}
|