1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
|
//main.cpp:
#include <iostream>
#include <iomanip>
#include <cstdlib>
#include "rational.h"
using namespace std;
int main()
{
rational r1(1,3), r2(1,3), r3;
cout << "r1 = " << r1;
cout << endl;
cout << "r2 = " << r2;
cout << endl;
r3 = r1 + r2;
cout << "r3 = r1 + r2 = " << r3;
cout << endl;
r3 = r1 - r2;
cout << "r4 = r1 - r2 = " << r3;
cout << endl;
r3 = r1 * r2;
cout << "r5 = r1 * r2 = " << r3;
cout << endl;
r3 = r1 / r2;
cout << "r6 = r1 / r2 = " << r3;
cout << endl;
int com = r1 > r2;
if (com == 1)
cout << "r1 is greater than r2" << endl;
else if (com == 0)
cout << "r1 and r2 are equal" << endl;
else if (com == -1)
cout << "r1 is less than r2" << endl;
system ("PAUSE");
return 0;
}
//rational.h:
#ifndef RATIONAL_H
#define RATIONAL_H
#include <iostream>
#include <iomanip>
using namespace std;
class rational
{
friend istream& operator>>(istream&, rational&);
// User is prompted to enter numerator then denominator for a rational number
// Precondition: denominator of rational number must not be zero
// Postcondition: rational reference object passed to the function is filled with values entered by user
friend ostream& operator<<(ostream&, rational&);
// Postcondition: displays the contents of the rational object passed to the function
// Note: the rational number should be displayed in the format of a / b, e.g., 1 / 2, -5 /9 (not 5 / -9), 1 / 4 (not 2 / 8), etc.
// Moreover, if the rational number is 1 / 1, then display just 1. If the rational number is 0 /5, then display just 0.
public:
rational();
// default constructor
// Postcondition: declared rational object is initialized to 1 (i.e., 1 / 1)
rational(int aa, int bb);
// second constructor
// Postcondition: numerator & denominator of the declared rational object is initialized to aa and bb, respectively and bb ? 0
void set(int aa, int bb);
// Postcondition: calling rational object is set to aa / bb
rational operator+(const rational &r2) const;
// Postcondition: sum of calling rational object and r2 is returned (notice the return type is rational!)
rational operator-(const rational &r2) const;
// Postcondition: (calling rational object – r2) is returned
rational operator*(const rational &r2) const;
// Postcondition: product of calling rational object and r2 is returned
rational operator/(const rational &r2) const;
// Postcondition: (calling rational object / r2) is returned
int operator>(const rational&r2) const;
// Postcondition: returns 1 if calling object is greater than r2; 0 if r1 is equal to r2; -1 is r1 is less than r2
private:
int GCD() const;
// You must use the Euclidean algorithm. https://en.wikipedia.org/wiki/Euclidean_algorithm
// Postcondition: returns the “greatest common divisor” between the numerator and denominator of the calling rational object
int a; // numerator
int b; // denominator
};
#endif
//rational.cpp:
#include <stdlib.h>
#include "rational.h"
using namespace std;
rational::rational()
{
}
rational::rational(int aa, int bb)
{
a = aa;
b = bb;
if (b == 0)
{
cout << "Denominator cannot equal 0\n";
exit(1);
}
}
void rational::set(int aa, int bb)
{
cout << "Enter numerator and denominator: \n";
cin >> aa >> bb;
}
rational rational::operator+(const rational &r2) const
{
rational sum;
sum.a = a * r2.b + r2.a * b;
sum.b = b * r2.b;
return sum;
}
rational rational::operator-(const rational &r2) const
{
rational difference;
difference.a = a * r2.b - r2.a * b;
difference.b = b * r2.b;
return difference;
}
rational rational::operator*(const rational &r2) const
{
rational product;
product.a = a * r2.a;
product.b = b * r2.b;
return product;
}
rational rational::operator/(const rational &r2) const
{
rational quotient;
quotient.a = a * r2.b;
quotient.b = b * r2.a;
return quotient;
}
int rational::operator>(const rational&r2) const
{
double r1total, r2total;
r1total = (double) a/b;
r2total = (double) r2.a/r2.b;
if (r1total > r2total)
return 1;
else if (r1total == r2total)
return 0;
else
return -1;
}
int rational::GCD() const
{
int n = abs(a);
int d = abs(b);
while(d != 0)
{
int temp = d;
d = n % d;
n = temp;
}
return n;
}
istream& operator>>(istream &in, rational &r2)
{
in >> r2.a >> r2.b;
return in;
}
ostream& operator<<(ostream &out, rational &r2)
{
int gcd = GCD();
if (r2.b < 0)
{
r2.b = -(r2.b);
r2.a = -(r2.a);
}
if(r2.a == 0)
{
out << 0;
}
if(r2.a == r2.b)
{
out << 1;
}
out << r2.a/gcd << "/" << r2.b/gcd;
return out;
}
|