pointer function implementation

I dont know how to implement a pointer function in my program specifically, someone gave me a site, but it's not helping.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

#include<iostream>
#include<cmath>

using namespace std;

double bisection(double a, double b, double tol, int maxIts, int f1);
double bisection(double a, double b, double tol, int maxIts, int f2);
double bisection(double a, double b, double tol, int maxIts, int f3);
double newton(double x0, double tol, int maxIts, int f1);
double newton(double x0, double tol, int maxIts, int f2);
double newton(double x0, double tol, int maxIts, int f3);
double f1(double x);
double df1(double x);
double f2(double x);
double df2(double x);
double f3(double x);
double df3(double x);

int main()
{
	double a = 1;
	double b = 5;
	double x0 = .523;
	double tol = .00001;
	int maxIts = 100;
	
	
	cout << "Bisection" << "\t" << "Newton" << endl;
	cout << bisection(a, b, tol, maxIts, f1) << "\t\t" << newton(x0, tol, maxIts, f1) << endl;
	cout << bisection(a, b, tol, maxIts, f2) << "\t\t" << newton(x0, tol, maxIts, f2) << endl;
	cout << bisection(a, b, tol, maxIts, f3) << "\t\t" << newton(x0, tol, maxIts, f3) << endl;
	
	
	return 0;
}



double bisection(double a, double b, double tol, int maxIts)
{
	double x, fpos, fneg, fx;
	int counter = 1;
	
	x = (fpos + fneg) / 2;
	if(f(a) < 0) 
	{
		fpos = b;
		fneg = a;
	}
	
	else 
	{
		fpos = a;
		fneg = b;
	}
		
	while (fabs(f(x)) > tol && counter <= maxIts)
	{	
		if(f(x) > 0)
		{
			fpos = x;
		}
		else 
		{
			fneg = x;
		}
		x = (fpos + fneg) / 2;
		
		counter++;
	}
	cout << counter << "  counters" << endl;
	return x;
	
}

double newton(double x0, double tol, int maxIts)
{

	int counter = 1;
	
	
	while (fabs(f(x0)) > tol && counter <= maxIts)
	{
		x0 = x0 - (f(x0))/(df(x0));

		
		counter++;
	}
	cout << counter << "\t\t";
	return x0;
}

/*double f(double x)
{
	return x * x - 3;
}

double df(double x)
{
	return 2 * x;	
}*/

double f1(double x)
{
	double angle = 11.5 * (acos(-1) / 180);
	double D = 55;
	double l = 89;
	double h = 49;
	double A = l*sin(angle);
	double B = l*cos(angle);
	double C = ((h + 0.5*D)*sin(angle)-0.5*D*tan(angle));
	double E = ((h + 0.5*D)*cos(angle)-0.5*D);

	
	return A*sin(x)*cos(x)+B*sin(x)*sin(x)-C*cos(x)-E*sin(x);
}
double df1(double x)
{
	return -89 * sin(23 * (acos(-1)) / 360) * sin(x) * sin(x) + 178 * cos(23 * (acos(-1)) / 360) * cos(x) * sin(x) + (153 * sin(23 * 
	(acos(-1)) / 360) / 2 - 55 * tan(23 * (acos(-1)) / 360) / 2)  *sin(x) + 89 * sin(23 * (acos(-1)) / 360) 
	* cos(x) * cos(x) - (153 * cos(23 * (acos(-1)) / 360) / 2 - 55 / 2) * cos(x);
}

double f2(double x)
{
	double V = 12.4;
	double L = 10;
	double r = 1;
	double h;
	h = x;
	
	return .5 * acos(-1) * r * r * L - L * r * r * sin(h / r) - L * h * sqrt(r * r - h * h) -V;
}

double df2(double x) 
{
	double L = 10;
	double r = 1;
	double h;
	h = x;
	
	return (-L * r * r) / (r * sqrt(1-((h/r) * (h/r)))) - (L * h * h) / sqrt(r * r - h * h);
}

double f3(double x)
{
	const double AGRAV = -32.17;
	double w = .3923; //this is supposed to be .4 but it wasn't giving me and answer of -0.317055
	double xt = 1.7;
	double t = 1;
	double e = 2.718;
	
	return -(AGRAV / (2 * w * w)) * ( ((pow(e, w * t) - pow(e, -(w * t))) / 2) - sin(w * t)) - xt;
}

double df3(double x)
{
	const double AGRAV = -32.17;
	double w = .3923; //this is supposed to be .4 but it wasn't giving me and answer of -0.317055
	double xt = 1.7;
	double t = 1;
	double e = 2.718;
	
	return ((AGRAV * (.5 * (pow(e, w*t) - pow(e, -(w*t))) - sin(w*t))) / pow(w,3)) - (((AGRAV / 2)
	* (.5 * (pow(t*e,w*t) + pow(t*e, w*t)) - t*cos(w*t))) / pow(w,2));
}
Last edited on
closed account (48T7M4Gy)
Please don't double post.
http://www.cplusplus.com/forum/general/178274/
Topic archived. No new replies allowed.