1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
|
#include <iostream>
#include <stdlib.h>
#include <ctime>
#include <cmath>
#define Ntrain 59
#define inputs 3
#define hidden 5
#define outputs 3
#define POP 19
using namespace std;
float randFloat(); ///declaring functions
float Sigmoid(float A);
class NeuralNet
{
public:
NeuralNet()
{
///assigning values to each weight
for(int i = 0; i < hidden-1 ; i++)
{
for(int j = 0; j < inputs ; j++)
{
weights1[i][j] = randFloat();
}
}
for(int i = 0; i < outputs ; i++)
{
for(int j = 0; j < hidden ; j++)
{
weights2[i][j] = randFloat();
}
}
}
float feedForward(int trainingIndex)
{
float hiddenNeuronSum[hidden-1]; ///sum of imputs to each node in hidden layer
for(int i = 0 ; i < hidden-1 ; i ++)///for each hidden neurone
{
hiddenNeuronSum[i] = 0;
for(int j = 0; j < inputs ; j ++ ) ///for each weight
hiddenNeuronSum[i] = hiddenNeuronSum[i] + (weights1[i][j])*(training[trainingIndex][j]);
}
for(int i = 0 ; i < hidden-1 ; i++) ///sigmoid it
{
hiddenNeuronSum[i] = Sigmoid(hiddenNeuronSum[i]);
}
///pass onto next layer
float outputNeuronSum[outputs];
for(int i = 0; i < outputs ; i ++)///for each output
{
outputNeuronSum[i] = 0;
for(int j = 0; j < hidden-1 ; j ++)///for each neurone in hidden layer
{
outputNeuronSum[i] = outputNeuronSum[i] + (weights2[i][j])*(hiddenNeuronSum[j]);
}
outputNeuronSum[i] = outputNeuronSum[i] + weights2[i][hidden-1];
}
for(int i = 0; i < outputs ; i ++)
{
outputNeuronSum[i] = Sigmoid(outputNeuronSum[i]);
}///sigmoid it again
float error = 0;
for(int i = 0; i < outputs ; i ++)
{
error = error + abs(training[trainingIndex][i+3] - outputNeuronSum[i]); ///calculate the error from each output node
}
return error;
}
float getError() ///returns error
{
return totalerror;
}
void calculateError() ///calculates each error from each output using training set
{
totalerror = 0;
for(int i = 0 ; i < Ntrain ; i ++)
{
totalerror = totalerror + feedForward(i);
}
}
void setScore(int score) ///sets fitness score
{
fitnessScore = score;
}
friend void crossOver(NeuralNet a, NeuralNet b, NeuralNet &c);
friend void transferGenes(NeuralNet a, NeuralNet &b);
int getScore()
{
return fitnessScore;
}
private:
float weights1[hidden-1][inputs]; ///weights in layer one
float weights2[outputs][hidden]; ///weights in layers two
float totalerror;
int fitnessScore;
float training[Ntrain][6] = {
///{Bias, log(Pa), Kelvin *10^-2, S, L ,G} the error is calculated using the last 3 values
{1, 5.0, 2.5, 1.0, 0, 0} ,
{1, 7.0, 3.15, 0, 1.0, 0} ,
{1, 3.0, 4.76, 0, 0, 1.0},
//3
///solids
{1, 7.0, 2.0, 1.0, 0, 0},
{1, 7.0, 2.5, 1.0, 0, 0},
{1, 6.0, 1.5, 1.0, 0, 0},
{1, 6.0, 2.5, 1.0, 0, 0},
{1, 5.0, 1.5, 1.0, 0, 0},
{1, 5.0, 2.0, 1.0, 0, 0},
{1, 4.0, 2.0, 1.0, 0, 0},
{1, 4.0, 2.5, 1.0, 0, 0},
{1, 3.0, 1.5, 1.0, 0, 0},
{1, 3.0, 2.5, 1.0, 0, 0},
{1, 2.0, 2.0, 1.0, 0, 0},
{1, 2.0, 2.5, 1.0, 0, 0},
{1, 1.0, 1.5, 1.0, 0, 0},
{1, 1.0, 2.0, 1.0, 0, 0},
{1, 1.0, 2.5, 1.0, 0, 0},
//15
///liquids
{1, 1.0, 2.5, 0, 1.0, 0},
{1, 1.0, 3.0, 0, 1.0, 0},
{1, 1.0, 3.5, 0, 1.0, 0},
{1, 1.0, 4.5, 0, 1.0, 0},
{1, 1.0, 5.0, 0, 1.0, 0},
{1, 2.0, 3.0, 0, 1.0, 0},
{1, 2.0, 3.5, 0, 1.0, 0},
{1, 2.0, 4.0, 0, 1.0, 0},
{1, 2.0, 4.5, 0, 1.0, 0},
{1, 2.0, 2.8, 0, 1.0, 0},
{1, 3.0, 3.0, 0, 1.0, 0},
{1, 3.0, 3.5, 0, 1.0, 0},
{1, 3.0, 4.0, 0, 1.0, 0},
{1, 3.0, 4.5, 0, 1.0, 0},
{1, 3.0, 5.0, 0, 1.0, 0},
{1, 4.0, 3.0, 0, 1.0, 0},
{1, 4.0, 3.3, 0, 1.0, 0},
{1, 4.0, 4.0, 0, 1.0, 0},
{1, 4.0, 4.5, 0, 1.0, 0},
{1, 4.0, 5.0, 0, 1.0, 0},
{1, 5.0, 4.0, 0, 1.0, 0},
{1, 5.0, 4.5, 0, 1.0, 0},
{1, 5.0, 3.8, 0, 1.0, 0},
{1, 5.0, 5.0, 0, 1.0, 0},
{1, 6.0, 4.7, 0, 1.0, 0},
{1, 6.0, 5.0, 0, 1.0, 0},
{1, 7.0, 6.0, 0, 1.0, 0},
//27
///gas
{1, 3.0, 2.8, 0, 0, 1.0},
{1, 4.0, 3.0, 0, 0, 1.0},
{1, 5.0, 2.8, 0, 0, 1.0},
{1, 5.0, 3.5, 0, 0, 1.0},
{1, 6.0, 3.0, 0, 0, 1.0},
{1, 6.0, 3.5, 0, 0, 1.0},
{1, 6.0, 4.0, 0, 0, 1.0},
{1, 6.0, 4.5, 0, 0, 1.0},
{1, 7.0, 2.8, 0, 0, 1.0},
{1, 7.0, 3.5, 0, 0, 1.0},
{1, 7.0, 4.0, 0, 0, 1.0},
{1, 7.0, 4.5, 0, 0, 1.0},
{1, 7.0, 5.0, 0, 0, 1.0},
{1, 7.0, 5.8, 0, 0, 1.0},
//14
};
};
int chooseParent(NeuralNet Population[POP]);
int main()
{
srand(time(0));
NeuralNet Population[POP];
NeuralNet Children[POP];
int nextgen =1; ///using nextgen to test if the loop is working
while(nextgen == 1){
for(int i = 0 ; i < POP ; i ++)
{
Population[i].calculateError();
}
for(int i = 0 ; i < POP ; i++)
{
int A = chooseParent(Population);
int B = chooseParent(Population);
crossOver(Population[A], Population[B], Children[i]);
}
for(int i =0 ; i < POP ; i ++)
{
transferGenes(Children[i], Population[i]);
}
nextgen = 0;
cin >> nextgen;
cin.ignore();
}
return 0;
}
void transferGenes(NeuralNet a, NeuralNet &b) //transfer weights from a to b
{
for(int i = 0; i < hidden-1 ; i++)
{
for(int j = 0; j < inputs ; j++)
{
b.weights1[i][j] = a.weights1[i][j];
}
}
for(int i = 0; i < outputs ; i++)
{
for(int j = 0; j < hidden ; j++)
{
b.weights2[i][j] = a.weights2[i][j];
}
}
}
void crossOver(NeuralNet a, NeuralNet b, NeuralNet &c) ///crossover
{
int random;
for(int i = 0; i < hidden-1 ; i++)
{
for(int j = 0; j < inputs ; j++)
{
random = rand()%2;
if(random == 1)
{
c.weights1[i][j] = a.weights1[i][j];
}else{
c.weights1[i][j] = b.weights1[i][j];
}
}
}
for(int i = 0; i < outputs ; i++)
{
for(int j = 0; j < hidden ; j++)
{
random = rand()%2;
if(random == 1)
{
c.weights2[i][j] = a.weights2[i][j];
}else{
c.weights2[i][j] = b.weights2[i][j];
}
}
}
}
int chooseParent(NeuralNet Population[POP]) ///using probability to select parents
{
int greatestError = Population[0].getError();
for(int i =1 ; i < POP ; i++)
{
if(Population[i].getError() > greatestError)
greatestError = Population[i].getError();
}
cout << greatestError << endl;
int totalFitness = 0;
for(int i =0 ; i < POP; i++)
{
Population[i].setScore(greatestError +1 - Population[i].getError());
totalFitness = totalFitness + Population[i].getScore();
}
int random = rand()%totalFitness +1;
int parentSelector = 0;
int parentIndex;
for(int i=0; parentSelector<random;i++)
{
parentSelector = parentSelector + Population[i].getScore();
parentIndex = i;
}
return parentIndex;
}
float randFloat()
{
float f = static_cast <float> (rand()) / (static_cast <float> (RAND_MAX));
int Pos_or_Neg = rand()%2;
if(Pos_or_Neg)
{
return f;
}else{
return -f;
}
}
float Sigmoid(float A)
{
return 1/(1+exp(-A));
}
|