Hash Tables

I having trouble with some hashing.
We are given the hash class and within the class we need to figure out total number of elements in the table , the size of table the total number of collisions.

We were given a file which contains thousands of words and with those words we need to figure out everything above.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
 template <typename HashedObj>
class HashTable
{
  public:
    explicit HashTable( int size = 101 ) : array( nextPrime( size ) )
      { makeEmpty( ); }

    bool contains( const HashedObj & x ) const
    {
        return isActive( findPos( x ) );
    }

    void makeEmpty( )
    {
        currentSize = 0;
        for( auto & entry : array )
            entry.info = EMPTY;
    }

    bool insert( const HashedObj & x )
    {
            // Insert x as active
        int currentPos = findPos( x );
        if( isActive( currentPos ) )
            return false;

        if( array[ currentPos ].info != DELETED )
            ++currentSize;

        array[ currentPos ].element = x;
        array[ currentPos ].info = ACTIVE;

            // Rehash; see Section 5.5
        if( currentSize > array.size( ) / 2 )
            rehash( );

        return true;
    }
    
    bool insert( HashedObj && x )
    {
            // Insert x as active
        int currentPos = findPos( x );
        if( isActive( currentPos ) )
            return false;

        if( array[ currentPos ].info != DELETED )
            ++currentSize;

        array[ currentPos ] = std::move( x );
        array[ currentPos ].info = ACTIVE;

            // Rehash; see Section 5.5
        if( currentSize > array.size( ) / 2 )
            rehash( );

        return true;
    }

    bool remove( const HashedObj & x )
    {
        int currentPos = findPos( x );
        if( !isActive( currentPos ) )
            return false;

        array[ currentPos ].info = DELETED;
        return true;
    }

    enum EntryType { ACTIVE, EMPTY, DELETED };

  private:
    struct HashEntry
    {
        HashedObj element;
        EntryType info;

        HashEntry( const HashedObj & e = HashedObj{ }, EntryType i = EMPTY )
          : element{ e }, info{ i } { }
        
        HashEntry( HashedObj && e, EntryType i = EMPTY )
          : element{ std::move( e ) }, info{ i } { }
    };
    
    vector<HashEntry> array;
    int currentSize;

    bool isActive( int currentPos ) const
      { return array[ currentPos ].info == ACTIVE; }

    int findPos( const HashedObj & x ) const
    {
        int offset = 1;
        int currentPos = myhash( x );

        while( array[ currentPos ].info != EMPTY &&
               array[ currentPos ].element != x )
        {
            currentPos += offset;  // Compute ith probe
            offset += 2;
            if( currentPos >= array.size( ) )
                currentPos -= array.size( );
        }

        return currentPos;
    }

    void rehash( )
    {
        vector<HashEntry> oldArray = array;

            // Create new double-sized, empty table
        array.resize( nextPrime( 2 * oldArray.size( ) ) );
        for( auto & entry : array )
            entry.info = EMPTY;

            // Copy table over
        currentSize = 0;
        for( auto & entry : oldArray )
            if( entry.info == ACTIVE )
                insert( std::move( entry.element ) );
    }

    size_t myhash( const HashedObj & x ) const
    {
        static hash<HashedObj> hf;
        return hf( x ) % array.size( );
    }
};

from cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
bool isPrime( int n )
{
    if( n == 2 || n == 3 )
        return true;

    if( n == 1 || n % 2 == 0 )
        return false;

    for( int i = 3; i * i <= n; i += 2 )
        if( n % i == 0 )
            return false;

    return true;
}

/**
 * Internal method to return a prime number at least as large as n.
 * Assumes n > 0.
 */
int nextPrime( int n )
{
    if( n % 2 == 0 )
        ++n;

    for( ; !isPrime( n ); n += 2 )
        ;

    return n;
}
Last edited on
Topic archived. No new replies allowed.