1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
|
#include <iostream>
#include <cmath>
//#include"exprtk.hpp" // error in exprtk because of gettimeofday in line 22000 sth.
//////////////////////
double cot(double z)
{
return 1.0 / tan(z);
}
double sec(double z)
{
return 1.0 / cos(z);
}
double csc(double z)
{
return 1.0 / sin(z);
}
double arcsin(double z)
{
return 1.0 / sin(z);
}
double arccos(double z)
{
return 1.0 / cos(z);
}
double arctan(double z)
{
return 1.0 / tan(z);
}
double arccot(double z)
{
return 1.0 / (1 / tan(z));
}
double acot(double z)
{
return 1.0 / (1 / tan(z));
}
double ln(double z)
{
return log(z);
}
double coth(double z)
{
return cosh(z) / sinh(z);
}
double arsinh(double z)
{
return log(z + sqrt(z*z+1));
}
double arcosh(double z)
{
return log(z + sqrt(z*z-1));
}
double artanh(double z)
{
return 1/tanh(z);
}
double arcoth(double z)
{
return 1/(cosh(z) / sinh(z));
}
////////////////////////////
class fpad // forward propagating automatic differentiation
{
private:
double value_;
double deriv_;
public:
fpad(double v, double d=0) : value_(v), deriv_(d) {}
double value() const {return value_;}
double derivative() const {return deriv_;}
const fpad& equalsTransform(double newVal, double outer_deriv) // Kettenregel
{ deriv_ = deriv_ * outer_deriv;
value_ = newVal;
return *this;
}
const fpad& operator+=(fpad const& x)
{ value_ += x.value_;
deriv_ += x.deriv_;
return *this;
}
const fpad& operator-=(fpad const& x)
{ value_ -= x.value_;
deriv_ -= x.deriv_;
return *this;
}
const fpad& operator*=(fpad const& x) // Produkt-Regel:
{
deriv_ = deriv_ * x.value_ + value_ * x.deriv_;
value_ *= x.value_;
return *this;
}
const fpad& operator/=(fpad const& x) //Quotientenregel
{
deriv_ = (deriv_ * x.value_ - value_ * x.deriv_) / (x.value_ * x.value_) ;
value_ *= x.value_;
return *this;
}
friend const fpad operator/(fpad const& a, fpad const& b)
{ fpad r(a); r/=b; return r; }
friend const fpad operator+(fpad const& a, fpad const& b)
{ fpad r(a); r+=b; return r; }
friend const fpad operator-(fpad const& a, fpad const& b)
{ fpad r(a); r-=b; return r; }
friend const fpad operator*(fpad const& a, fpad const& b)
{ fpad r(a); r*=b; return r; }
};
///// Trigometrische /////
fpad sin(fpad t)
{
using std::sin;
using std::cos;
double v = t.value();
t.equalsTransform(sin(v),cos(v)); // Verkettung
return t;
}
fpad cos(fpad t)
{
using std::sin;
using std::cos;
double v = t.value();
t.equalsTransform(cos(v),-sin(v)); // Verkettung
return t;
}
fpad tan(fpad t)
{
using std::cos;
using std::tan;
double v = t.value();
t.equalsTransform(tan(v),(1/(cos(v)*cos(v)))); // Verkettung
return t;
}
fpad cot(fpad t)
{
using std::sin;
double cot(double d);
double v = t.value();
t.equalsTransform(cot(v),(-1/(sin(v)*sin(v)))); // Verkettung
return t;
}
fpad sec(fpad t)
{
using std::cos;
double sec(double d);
double v = t.value();
t.equalsTransform(sec(v),(sin(v)/(cos(v)*cos(v)))); // Verkettung
return t;
}
fpad csc(fpad t)
{
using std::sin;
using std::cos;
double csc(double d);
double v = t.value();
t.equalsTransform(csc(v),(-1/sin(v))*(cos(v)/sin(v))); // Verkettung
return t;
}
fpad arcsin(fpad t)
{
double arcsin(double d);
double v = t.value();
t.equalsTransform(arcsin(v),(1/sqrt(1-v*v))); // Verkettung
return t;
}
fpad asin(fpad t)
{
using std::asin;
double v = t.value();
t.equalsTransform(asin(v),(1/sqrt(1-v*v))); // Verkettung
return t;
}
fpad arccos(fpad t)
{
double arccos(double d);
double v = t.value();
t.equalsTransform(arccos(v),(-1/sqrt(1-v*v))); // Verkettung
return t;
}
fpad acos(fpad t)
{
using std::acos;
double v = t.value();
t.equalsTransform(acos(v),(-1/sqrt(1-v*v))); // Verkettung
return t;
}
fpad arctan(fpad t)
{
double arctan(double d);
double v = t.value();
t.equalsTransform(arctan(v),(1/(1+v*v))); // Verkettung
return t;
}
fpad atan(fpad t)
{
using std::atan;
double v = t.value();
t.equalsTransform(atan(v),(1/(1+v*v))); // Verkettung
return t;
}
fpad arccot(fpad t)
{
double arccot(double d);
double v = t.value();
t.equalsTransform(arccot(v),(-1/(1+v*v))); // Verkettung
return t;
}
fpad acot(fpad t)
{
double acot(double d);
double v = t.value();
t.equalsTransform(acot(v),(-1/(1+v*v))); // Verkettung
return t;
}
///// Exponentialfunktionen /////
fpad exp(fpad t)
{
using std::exp;
double v = t.value();
t.equalsTransform(exp(v),exp(v)); // Verkettung
return t;
}
// hier fehlt/missing: a^x -> (ln a) * a^x
///// Logarithmusfunktionen /////
fpad ln(fpad t)
{
double ln(double d);
double v = t.value();
t.equalsTransform(ln(v),(1/((v)))); // Verkettung
return t;
}
fpad log(fpad t)
{
using std::log;
double v = t.value();
t.equalsTransform(log(v),(1/((v)))); // Verkettung
return t;
}
// hier fehlt/missing: logax -> (1/(log a)*x)
///// Hyperbelfunktionen /////
fpad sinh(fpad t)
{
using std::sinh;
using std::cosh;
double v = t.value();
t.equalsTransform(sinh(v),cosh(v)); // Verkettung
return t;
}
fpad cosh(fpad t)
{
using std::sinh;
using std::cosh;
double v = t.value();
t.equalsTransform(cosh(v),sinh(v)); // Verkettung
return t;
}
fpad tanh(fpad t)
{
using std::tanh;
double v = t.value();
t.equalsTransform(tanh(v),(1-tanh(v)*tanh(v))); // Verkettung
return t;
}
fpad coth(fpad t)
{
double coth(double d);
double v = t.value();
t.equalsTransform(coth(v),(1-coth(v)*coth(v))); // Verkettung
return t;
}
///// Areafunktionen /////
fpad arsinh(fpad t)
{
double arsinh(double d);
double v = t.value();
t.equalsTransform(arsinh(v),(1/sqrt((v)*(v)+1))); // Verkettung
return t;
}
fpad arcosh(fpad t)
{
double arcosh(double d);
double v = t.value();
t.equalsTransform(arcosh(v),(1/sqrt((v)*(v)-1))); // Verkettung
return t;
}
fpad artanh(fpad t)
{
double artanh(double d);
double v = t.value();
t.equalsTransform(artanh(v),(1/((v)*(v)-1))); // Verkettung
return t;
}
fpad arcoth(fpad t)
{
double arcoth(double d);
double v = t.value();
t.equalsTransform(arcoth(v),(1/((v)*(v)-1))); // Verkettung
return t;
}
// feel free to copy the code for any use, if you have suggestions on how to improve it please write me a message
|