1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
|
#include <iostream>
#include <vector>
#include <boost/multiprecision/cpp_int.hpp>
#include <ctime>
int main()
{
enum {Primes = 168};
const int prime[] = {3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,
79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,
191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,
307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,
431,433,439,443,449,457,461,463,467,479,487,491,499,503,509,521,523,541,547,557,
563,569,571,577,587,593,599,601,607,613,617,619,631,641,643,647,653,659,661,673,
677,683,691,701,709,719,727,733,739,743,751,757,761,769,773,787,797,809,811,821,
823,827,829,839,853,857,859,863,877,881,883,887,907,911,919,929,937,941,947,953,
961,967,971,977,983,991,997};//primes (2,1000]
//we ignored 2 because half the numbers in a range from
//1->n will be even and half will be odd
const int max = 100000;
int sum = max;
//we will find the sum of the primes given above
//for the values of i^2+1
//so every odd will become even and even will become odd
//which means we can skip 1 in our for loop
//since 1 * 1 == 1 + 1 == 2 and 2 we already added
std::clock_t start = std::clock();
std::cout << "Method 1:" << std::endl;
using boost::multiprecision::cpp_int;
for(cpp_int i = 2; i <= max; ++i)
{
for(int j = 0; j < Primes; ++j)
{
if((i*i+1) % prime[j] == 0)
{
sum += prime[j];
}
}
}
std::cout << "Sum: " << sum << std::endl;
std::cout << "This method took: " << (std::clock() - start) / static_cast<double>(CLOCKS_PER_SEC) << " seconds" << std::endl;
start = std::clock();
sum = max;
std::cout << "Method 2:" << std::endl;
for(cpp_int i = 2; i <= max; ++i)
{
cpp_int temp = i * i + 1;
while(temp&1==0)
{
temp >>= 1;
}
for(int j = 0; temp != 1 && j < Primes; ++j)
{
if(temp%prime[j]==0)
{
sum += prime[j];
while(temp%prime[j]==0)
{
temp /= prime[j];
}
}
}
}
std::cout << "Sum: " << sum << std::endl;
std::cout << "This method took: " << (std::clock() - start) / static_cast<double>(CLOCKS_PER_SEC) << " seconds" << std::endl;
}
|
g++-4.8 -std=c++11 -Wall -Wextra -O3 -pedantic-errors main.cpp && ./a.out
g++-4.8 -std=c++11 -Wall -Wextra -O2 -pedantic-errors main.cpp && ./a.out
Method 1:
Sum: 16099505
This method took: 1.75 seconds
Method 2:
Sum: 16099505
This method took: 1.02 seconds
Method 1:
Sum: 16099505
This method took: 1.82 seconds
Method 2:
Sum: 16099505
This method took: 1.13 seconds |