A Gauss-Jordan C++ Code
Feb 24, 2014 at 4:14am UTC
Hi there. This is a simple Gauss-Jordan Elimination matrix code. I just want to ask for comments with this code since I'm a beginner. Thank you. Any comment is welcome.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
/*************** Gauss Jordan Elimination Matrix ********************/
#include<iostream>
#include<cmath>
#include<cstdlib>
using namespace std;
int i,j,k,n;
float a[10][11]={0},d;
int main()
{
system("CLS" );
cout << " ==============================================================================" << endl;
cout << " ======================== Gauss-Jordan Emilimination Matrix ===================" << endl;
cout << " ==============================================================================" << endl;
cout << endl;
cout << "How many variables? " ;
cin >> n;
cout << endl;
cout << "Please enter the coefficients:" << endl;
for (i = 0; i < n; i++) //Inputs the coefficients of the matrix
{
for (j = 0; j < n+1; j++)
{
cin >> a[i][j];
}
}
cout << endl;
cout << "This is your input:" << endl;
for (i = 0; i < n; i++)
{
for (j = 0; j < n+1; j++)
{
cout << "" << a[i][j] << " " ;
}
cout << endl;
}
cout << endl;
system("pause" );
/************** Partial pivoting **************/
for (i = 0; i < n; i++)
{
for (j = 0; j < 2*n; j++)
{
if (j == (i+n))
a[i][j] = 1;
}
}
for (i = n; i > 1; i--)
{
if (a[i-1][1] < a[i][1])
for (j = 0; j < 2*n+1; j++)
{
d = a[i][j];
a[i][j] = a[i-1][j];
a[i-1][j] = d;
}
}
cout << endl;
cout << "Pivoted output: " << endl;
for (i = 0; i < n; i++)
{
for (j = 0; j < 2*n+1; j++)
{
cout << a[i][j] << " " ;
}
cout << endl;
}
cout << endl;
/********** Reducing To Diagonal Matrix ***********/
for (i = 0; i < n; i++)
{
for (j = 0; j < 2*n+1; j++)
if (j!=i)
{
d=a[j][i]/a[i][i];
for (k = 0; k < n*2; k++)
a[j][k] -= a[i][k]*d;
}
}
cout << endl;
/************** Reducing To Unit Matrix *************/
for (i = 0; i < n; i++)
{
d = a[i][i];
for (j = 0; j < 2*n+1; j++)
a[i][j] = a[i][j]/d;
}
cout<<"Your solutions: " <<endl;
for (i=0; i < n; i++)
{
for (j = n+1; j < 2*n+1; j++)
cout << a[i][j] <<" " ;
cout << endl;
}
system ("pause" );
return 0;
}
Topic archived. No new replies allowed.