Binary Search Tree Help
Jan 18, 2014 at 4:54pm UTC
Binary Search Tree's are one of my weak points in C++. I understand the concept but utilizing them is completely foreign to me. Below is the code from my textbook, and I have to "Change the BinarySearchTree.print member function to print the tree as a tree shape."
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
#include <iostream>
#include <string>
using namespace std;
class TreeNode
{
public :
void insert_node(TreeNode* new_node);
void print_nodes() const ;
bool find(string value) const ;
private :
string data;
TreeNode* left;
TreeNode* right;
friend class BinarySearchTree;
};
class BinarySearchTree
{
public :
BinarySearchTree();
void insert(string data);
void erase(string data);
int count(string data) const ;
void print() const ;
private :
TreeNode* root;
};
BinarySearchTree::BinarySearchTree()
{
root = NULL;
}
void BinarySearchTree::print() const
{
if (root != NULL)
root->print_nodes();
}
void BinarySearchTree::insert(string data)
{
TreeNode* new_node = new TreeNode;
new_node->data = data;
new_node->left = NULL;
new_node->right = NULL;
if (root == NULL) root = new_node;
else root->insert_node(new_node);
}
void TreeNode::insert_node(TreeNode* new_node)
{
if (new_node->data < data)
{
if (left == NULL) left = new_node;
else left->insert_node(new_node);
}
else if (data < new_node->data)
{
if (right == NULL) right = new_node;
else right->insert_node(new_node);
}
}
int BinarySearchTree::count(string data) const
{
if (root == NULL) return 0;
else if (root->find(data)) return 1;
else return 0;
}
void BinarySearchTree::erase(string data)
{
// Find node to be removed
TreeNode* to_be_removed = root;
TreeNode* parent = NULL;
bool found = false ;
while (!found && to_be_removed != NULL)
{
if (to_be_removed->data < data)
{
parent = to_be_removed;
to_be_removed = to_be_removed->right;
}
else if (data < to_be_removed->data)
{
parent = to_be_removed;
to_be_removed = to_be_removed->left;
}
else found = true ;
}
if (!found) return ;
// to_be_removed contains data
// If one of the children is empty, use the other
if (to_be_removed->left == NULL || to_be_removed->right == NULL)
{
TreeNode* new_child;
if (to_be_removed->left == NULL)
new_child = to_be_removed->right;
else
new_child = to_be_removed->left;
if (parent == NULL) // Found in root
root = new_child;
else if (parent->left == to_be_removed)
parent->left = new_child;
else
parent->right = new_child;
return ;
}
// Neither subtree is empty
// Find smallest element of the right subtree
TreeNode* smallest_parent = to_be_removed;
TreeNode* smallest = to_be_removed->right;
while (smallest->left != NULL)
{
smallest_parent = smallest;
smallest = smallest->left;
}
// smallest contains smallest child in right subtree
// Move contents, unlink child
to_be_removed->data = smallest->data;
if (smallest_parent == to_be_removed)
smallest_parent->right = smallest->right;
else
smallest_parent->left = smallest->right;
}
bool TreeNode::find(string value) const
{
if (value < data)
{
if (left == NULL) return false ;
else return left->find(value);
}
else if (data < value)
{
if (right == NULL) return false ;
else return right->find(value);
}
else
return true ;
}
void TreeNode::print_nodes() const
{
if (left != NULL)
left->print_nodes();
cout << data << "\n" ;
if (right != NULL)
right->print_nodes();
}
int main()
{
BinarySearchTree t;
t.insert("D" );
t.insert("B" );
t.insert("A" );
t.insert("C" );
t.insert("F" );
t.insert("E" );
t.insert("I" );
t.insert("G" );
t.insert("H" );
t.insert("J" );
t.erase("A" ); // Removing leaf
t.erase("B" ); // Removing element with one child
t.erase("F" ); // Removing element with two children
t.erase("D" ); // Removing root
t.print();
cout << t.count("E" ) << "\n" ;
cout << t.count("F" ) << "\n" ;
return 0;
}
If I understand what the question is asking, I need to change this:
1 2 3 4 5
void BinarySearchTree::print() const
{
if (root != NULL)
root->print_nodes();
}
which is a pointer to:
1 2 3 4 5 6 7 8
void TreeNode::print_nodes() const
{
if (left != NULL)
left->print_nodes();
cout << data << "\n" ;
if (right != NULL)
right->print_nodes();
}
From here, I get lost because pointers is also a weak spot for me.
Any help anyone could offer would be amazing!
Thanks!
ToonHead
Last edited on Jan 18, 2014 at 4:56pm UTC
Jan 19, 2014 at 2:02am UTC
If such shape is good enough, there's an example - just add extra argument to printing function:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
void BinarySearchTree::print() const
{
if (root != NULL)
root->print_nodes(0);
}
void TreeNode::print_nodes(int level) const
{
string indent;
for (int i = 1; i < level; i++)
indent += " " ;
cout << "\n" << indent;
if (level) cout << "|_" ;
cout << data;
if (left != NULL){
left->print_nodes(level + 1);
}
if (right != NULL)
{
right->print_nodes(level + 1);
}
}
D
|_B
|_A
|_C
|_F
|_E
|_I
|_G
|_H
|_J
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// For things like:
D // Determining at which width
/ \ // to start seems impossible
/ \ // without a node knowing
B F // all it's parents and children
/ \ / \
A C E I
/ \
G J
/
H
// ...I don't know, sorry.
or even:
D
|_B
| |_A
| |_C // These vertical lines are loosing me
|_F
|_E
|_I
|_G
| |_H
|_J
Last edited on Jan 19, 2014 at 6:43pm UTC
Jan 19, 2014 at 4:16pm UTC
it makes complete sense. I don't know if I could have come up with that.
Thanks JockX.
ToonHead
Last edited on Jan 19, 2014 at 4:17pm UTC
Topic archived. No new replies allowed.