1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
|
#include <cstdlib>
#include <cmath>
#include <vector>
#include <iostream>
#include <fstream>
#include <string>
using namespace std;
int main()
{
//create a 2D vector of doubles
vector< vector< double > > matrix;
int num_lines = 0;
double temporary, r;
int i, j, k, dimension, temp; /* counter variables for loops */
// Open a file containing the matrix data
ifstream myFile("test_data2.txt");
// Check if file is open
if(myFile.is_open())
{
// First step is to detect matrix size by assuming matrix is
// square and counting number of columns.
// Tempoary variable to hold current line to process
string line;
// Tempoary variable to hold number of rows and cols in square matrix
int num_lines = 0;
// Count rows / cols
while(getline(myFile, line))
{
num_lines ++;
}
// Reset EOF flag
myFile.clear();
// Reset to start of file
myFile.seekg(0, myFile.beg);
// Second step is to grab lines from the file and process them
// splitting each line into substrings and converting them into
// doubles
// For each line
for(int l = 0; l < num_lines; l ++)
{
// Process line by line
getline(myFile, line);
// Tempoary vector to hold rows of matrix data
vector<double> temp;
// Tempoary variable to hold search positions
int start = 0;
int end;
int length;
// Get value by value
for(int n = 0; n < num_lines; n ++)
{
// Break line down by finding commas
end = line.find(',', start);
length = end - start;
// Extract substring
string tempstr = line.substr(start, length);
// Set next value of start
start = end + 1;
// Convert to double
temp.push_back(atof(tempstr.c_str()));
}
// Add row to matrix
matrix.push_back(temp);
}
// Close input file
myFile.close();
} else {
// If input file failed to open, print an error
cout << "Error opening input file" << endl;
}
// Print out the matrix (will do nothing if input file open failed)
cout << "Print out input file." << endl;
for(int i = 0; i < matrix.size(); i ++)
{
for(int j = 0; j < matrix[i].size(); j ++)
{
cout << matrix[i][j];
// Add commas and new lines when required
// Remember not to add commas after rightmost values, or
// a new line at the end of the last value
if(j < matrix[i].size() - 1)
{
cout << ' '; // Character, not string
}
else
{
if(i < matrix[i].size() - 1)
{
cout << '\n'; // Character, not string
}
}
}
}
for (i = 0; i < num_lines; i++)
for (j = num_lines; j < 2 * num_lines; j++)
if (i == j % num_lines)
matrix[i][j] = 1;
else
matrix[i][j] = 0;
/* using gauss-jordan elimination */
for (j = 0; j < num_lines; j++) {
temp = j;
/* finding maximum jth column element in last (dimension-j) rows */
for (i = j + 1; i < num_lines; i++)
if (matrix[i][j] > matrix[temp][j])
temp = i;
/* swapping row which has maximum jth column element */
if (temp != j)
for (k = 0; k < 2 * num_lines; k++) {
temporary = matrix[j][k];
matrix[j][k] = matrix[temp][k];
matrix[temp][k] = temporary;
}
/* performing row operations to form required identity matrix out of the input matrix */
for (i = 0; i < num_lines; i++)
if (i != j) {
r = matrix[i][j];
for (k = 0; k < 2 * num_lines; k++)
matrix[i][k] -= matrix[j][k] * r / matrix[j][j];
} else {
r = matrix[i][j];
for (k = 0; k < 2 * dimension; k++)
matrix[i][k] /= r;
}
}
/* Display augmented matrix */
printf("\n After Gauss-Jordan elimination, augmented matrix is : \n\n");
for (i = 0; i < num_lines; i++) {
for (j = 0; j < 2 * num_lines; j++)
printf(" %4.2f", matrix[i][j]);
printf("\n");
}
/* displaying inverse of the non-singular matrix */
printf("\n\n\n The inverse of the entered non-singular matrix is : \n\n");
for (i = 0; i < num_lines; i++) {
for (j = num_lines; j < 2 * num_lines; j++)
printf(" %.5f", matrix[i][j]);
printf("\n");
}
return 0;
}
// EXAMPLE FILE
//1,2,3
//4.5,6.7,8.8
//-110,-55.3,+53.723
// END OF EXAMPLE FILE REMOVE COMMENTS AT TOP AND BOTTOM AND "//" characters before use. Save as "matrix.csv".
|