C++ Binary Search Tree

Hello,
I have been trying to understand how binary search trees work. I found this example but struggle to understand how it works. Especially when its starts ordering the binary tree. Please could some one help me out by giving me a run down of what is happening with the code and possible comment some of the code? Thanks for any help.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
          
          #include<iostream.h>
          #include<conio.h>
          #include<stdio.h>
          #include<stdlib.h>
          struct node
          {
               int data;
               node *left;
               node *right;
          };

          node *tree=NULL;
          node *insert(node *tree,int ele);

          void preorder(node *tree);
          void inorder(node *tree);
          void postorder(node *tree);
          int count=1;

          void main()
          {
               clrscr();
               int ch,ele;
               do
               {
                    clrscr();
                    cout<<"\n\t\a\a1----INSERT A NODE IN A BINARY TREE.\a\a";
                    cout<<"\n\t\a\a2----PRE-ORDER TRAVERSAL.\a\a";
                    cout<<"\n\t\a\a3----IN-ORDER TRAVERSAL.\a\a";
                    cout<<"\n\t\a\a4----POST-ORDER TRAVERSAL.\a\a";
                    cout<<"\n\t\a\a5----EXIT.\a\a";
                    cout<<"\n\t\a\aENTER CHOICE::\a\a";
                    cin>>ch;
                    switch(ch)
                    {
                         case 1:
                         cout<<"\n\t\a\aENTER THE ELEMENT::\a\a";
                         cin>>ele;
                         tree=insert(tree,ele);
                         break;

                         case 2:
                         cout<<"\n\t\a\a****PRE-ORDER TRAVERSAL OF A TREE****\a\a";
                         preorder(tree);
                         break;

                         case 3:
                         cout<<"\n\t\a\a****IN-ORDER TRAVERSAL OF A TREE****\a\a";
                         inorder(tree);
                         break;

                         case 4:
                         cout<<"\n\t\a\a****POST-ORDER TRAVERSAL OF A TREE****\a\a";
                         postorder(tree);
                         break;

                         case 5:
                         exit(0);
                    }
               }while(ch!=5);
          }

          node *insert(node *tree,int ele)
          {
               if(tree==NULL)
               {
                    tree=new node;
                    tree->left=tree->right=NULL;
                    tree->data=ele;
                    count++;
               }
               else
               if(count%2==0)
               tree->left=insert(tree->left,ele);
               else
               tree->right=insert(tree->right,ele);
               return(tree);
          }

          void preorder(node *tree)
          {
               if(tree!=NULL)
               {
                    cout<<tree->data;
                    preorder(tree->left);
                    preorder(tree->right);
                    getch();
               }
          }

          void inorder(node *tree)
          {
               if(tree!=NULL)
               {
                    inorder(tree->left);
                    cout<<tree->data;
                    inorder(tree->right);
                    getch();
               }
          }

          void postorder(node *tree)
          {
               if(tree!=NULL)
               {
                    postorder(tree->left);
                    postorder(tree->right);
                    cout<<tree->data;
                    getch();
               }
          }
Last edited on
@dookie: The given code does not build a binary search tree. The insert(...) method is not correct. Please see the following code.
[ copy/pasted from http://www.cplusplus.happycodings.com/Algorithms/code5.html]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295

//Binary Search Tree Program

#include <iostream>
#include <cstdlib>
using namespace std;

class BinarySearchTree
{
    private:
        struct tree_node
        {
           tree_node* left;
           tree_node* right;
           int data;
        };
        tree_node* root;
    
    public:
        BinarySearchTree()
        {
           root = NULL;
        }
       
        bool isEmpty() const { return root==NULL; }
        void print_inorder();
        void inorder(tree_node*);
        void print_preorder();
        void preorder(tree_node*);
        void print_postorder();
        void postorder(tree_node*);
        void insert(int);
        void remove(int);
};

// Smaller elements go left
// larger elements go right
void BinarySearchTree::insert(int d)
{
    tree_node* t = new tree_node;
    tree_node* parent;
    t->data = d;
    t->left = NULL;
    t->right = NULL;
    parent = NULL;
    
    // is this a new tree?
    if(isEmpty()) root = t;
    else
    {
        //Note: ALL insertions are as leaf nodes
        tree_node* curr;
        curr = root;
        // Find the Node's parent
        while(curr)
        {
            parent = curr;
            if(t->data > curr->data) curr = curr->right;
            else curr = curr->left;
        }

        if(t->data < parent->data)
           parent->left = t;
        else
           parent->right = t;
    }
}

void BinarySearchTree::remove(int d)
{
    //Locate the element
    bool found = false;
    if(isEmpty())
    {
        cout<<" This Tree is empty! "<<endl;
        return;
    }
    
    tree_node* curr;
    tree_node* parent;
    curr = root;
    
    while(curr != NULL)
    {
         if(curr->data == d)
         {
            found = true;
            break;
         }
         else
         {
             parent = curr;
             if(d>curr->data) curr = curr->right;
             else curr = curr->left;
         }
    }
    if(!found)
		 {
        cout<<" Data not found! "<<endl;
        return;
    }


		 // 3 cases :
    // 1. We're removing a leaf node
    // 2. We're removing a node with a single child
    // 3. we're removing a node with 2 children

    // Node with single child
    if((curr->left == NULL && curr->right != NULL)|| (curr->left != NULL
&& curr->right == NULL))
    {
       if(curr->left == NULL && curr->right != NULL)
       {
           if(parent->left == curr)
           {
             parent->left = curr->right;
             delete curr;
           }
           else
           {
             parent->right = curr->right;
             delete curr;
           }
       }
       else // left child present, no right child
       {
          if(parent->left == curr)
           {
             parent->left = curr->left;
             delete curr;
           }
           else
           {
             parent->right = curr->left;
             delete curr;
           }
       }
     return;
    }

		 //We're looking at a leaf node
		 if( curr->left == NULL && curr->right == NULL)
    {
        if(parent->left == curr) parent->left = NULL;
        else parent->right = NULL;
		 		 delete curr;
		 		 return;
    }


    //Node with 2 children
    // replace node with smallest value in right subtree
    if (curr->left != NULL && curr->right != NULL)
    {
        tree_node* chkr;
        chkr = curr->right;
        if((chkr->left == NULL) && (chkr->right == NULL))
        {
            curr = chkr;
            delete chkr;
            curr->right = NULL;
        }
        else // right child has children
        {
            //if the node's right child has a left child
            // Move all the way down left to locate smallest element

            if((curr->right)->left != NULL)
            {
                tree_node* lcurr;
                tree_node* lcurrp;
                lcurrp = curr->right;
                lcurr = (curr->right)->left;
                while(lcurr->left != NULL)
                {
                   lcurrp = lcurr;
                   lcurr = lcurr->left;
                }
		curr->data = lcurr->data;
                delete lcurr;
                lcurrp->left = NULL;
           }
           else
           {
               tree_node* tmp;
               tmp = curr->right;
               curr->data = tmp->data;
	       curr->right = tmp->right;
               delete tmp;
           }

        }
		 return;
    }

}

void BinarySearchTree::print_inorder()
{
  inorder(root);
}

void BinarySearchTree::inorder(tree_node* p)
{
    if(p != NULL)
    {
        if(p->left) inorder(p->left);
        cout<<" "<<p->data<<" ";
        if(p->right) inorder(p->right);
    }
    else return;
}

void BinarySearchTree::print_preorder()
{
    preorder(root);
}

void BinarySearchTree::preorder(tree_node* p)
{
    if(p != NULL)
    {
        cout<<" "<<p->data<<" ";
        if(p->left) preorder(p->left);
        if(p->right) preorder(p->right);
    }
    else return;
}

void BinarySearchTree::print_postorder()
{
    postorder(root);
}

void BinarySearchTree::postorder(tree_node* p)
{
    if(p != NULL)
    {
        if(p->left) postorder(p->left);
        if(p->right) postorder(p->right);
        cout<<" "<<p->data<<" ";
    }
    else return;
}

int main()
{
    BinarySearchTree b;
    int ch,tmp,tmp1;
    while(1)
    {
       cout<<endl<<endl;
       cout<<" Binary Search Tree Operations "<<endl;
       cout<<" ----------------------------- "<<endl;
       cout<<" 1. Insertion/Creation "<<endl;
       cout<<" 2. In-Order Traversal "<<endl;
       cout<<" 3. Pre-Order Traversal "<<endl;
       cout<<" 4. Post-Order Traversal "<<endl;
       cout<<" 5. Removal "<<endl;
       cout<<" 6. Exit "<<endl;
       cout<<" Enter your choice : ";
       cin>>ch;
       switch(ch)
       {
           case 1 : cout<<" Enter Number to be inserted : ";
                    cin>>tmp;
                    b.insert(tmp);
                    break;
           case 2 : cout<<endl;
                    cout<<" In-Order Traversal "<<endl;
                    cout<<" -------------------"<<endl;
                    b.print_inorder();
                    break;
           case 3 : cout<<endl;
                    cout<<" Pre-Order Traversal "<<endl;
                    cout<<" -------------------"<<endl;
                    b.print_preorder();
                    break;
           case 4 : cout<<endl;
                    cout<<" Post-Order Traversal "<<endl;
                    cout<<" --------------------"<<endl;
                    b.print_postorder();
                    break;
           case 5 : cout<<" Enter data to be deleted : ";
                    cin>>tmp1;
                    b.remove(tmp1);
                    break;
           case 6 : 
                    return 0;
                    
       }
    }
}
Last edited on
Ok this code is good but i need to write it myself for an assinment. Would you be able to hepl edit my code it make it work?
Topic archived. No new replies allowed.