• Articles
  • Koch Fractal - One of the easiest algori
Published by
Oct 1, 2015 (last update: Oct 13, 2015)

Koch Fractal - One of the easiest algorithms with graphics

Score: 4.2/5 (348 votes)
*****

What is Koch Fractal?

Koch Fractal is a simple algorithm which produces snowflake from a triangle. The concept behind this, is to break a line into two while leaving one third of the space between them where we fit two more lines forming an equilateral triangle without the base. This process is, then repeated to all lines again and again!

The Implementation

First thing, you should know basics of C++ as well as a bit of SDL2 and basic trigonometry to understand it.
We are going to use SDL2 to have some graphics. We will only use some of its basic primitive drawing methods for drawing lines. So, we are going to include only SDL2 header. We are also going to include list.h to have a list of lines.
1
2
#include <list>
#include <SDL2/SDL.h> // or #include <SDL.h> 

Now, we need an SDL_Window*, an SDL_Renderer* and an SDL_Event instance to have the image on screen and to handle events.
1
2
3
4
5
6
7
SDL_Window* window = NULL;
SDL_Renderer* renderer = NULL;

bool quit = false;
SDL_Event in;
const int SCR_W = 640; // Width of the window
const int SCR_H = 480; // Height of the window 


Previously, I said that there will be a list of lines. That means, we need to define line as a struct or a class. You can use struct as well but I am using class for that.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
class Line
{
public:

	double x, y, length, angle; // Members
	
	Line(double x, double y, double length, double angle) : x(x), y(y), length(length), angle(angle) {}
	
	double getX2() // Getting the second x coordinate based on the angle and length
	{
		return x+cos(angle*(M_PI/180.0))*length;
	}
	
	double getY2() // Getting the second y coordinate based on the angle and length
	{
		return y+sin(angle*(M_PI/180.0))*length;
	}
	
	void draw()
	{
		SDL_SetRenderDrawColor(renderer, 100,255,100,255); // Setting the color of the line
		SDL_RenderDrawLine(renderer,x,y, getX2(),getY2()); // Drawing the line
		SDL_SetRenderDrawColor(renderer, 0,0,0,255); // Resetting the color
	}
};

Now, we need to have a list of lines.
 
std::list<Line*> lines; //Note that we do not take Line, we take Line* 

Finally, the Koch algorithm implementation, all in one function which takes list of Line* as a parameter.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
//Worth noting: It's a heavy function!
void kochFractal( std::list<Line*> & lines )
{
	std::list<Line*> newLines; //For getting new Line*(s)
	std::list<Line*> delLines; //For getting Line*(s) to be deleted
	for(auto itr = lines.begin(); itr != lines.end(); itr++)
	{
		double x_l1 = (*itr)->x;
		double y_l1 = (*itr)->y;
		double len_l1 = (*itr)->length/3;
		double ang_l1 = (*itr)->angle;
	
		double x_l2 = (*itr)->x + (cos((*itr)->angle*(M_PI/180.0))*(*itr)->length/1.5);
		double y_l2 = (*itr)->y + (sin((*itr)->angle*(M_PI/180.0))*(*itr)->length/1.5);
		double len_l2 = (*itr)->length/3;
		double ang_l2 = (*itr)->angle;
		
		double x_l3 = (*itr)->x + (cos((*itr)->angle*(M_PI/180.0))*(*itr)->length/3.0);
		double y_l3 = (*itr)->y + (sin((*itr)->angle*(M_PI/180.0))*(*itr)->length/3.0);
		double len_l3 = (*itr)->length/3.0;
		double ang_l3 = (*itr)->angle - 300.0;

		double x_l4 = (*itr)->x + (cos((*itr)->angle*(M_PI/180.0))*((*itr)->length/1.5));
		double y_l4 = (*itr)->y + (sin((*itr)->angle*(M_PI/180.0))*((*itr)->length/1.5));
		double len_l4 = (*itr)->length/3.0;
		double ang_l4 = (*itr)->angle - 240.0;

		//All four lines properties are setted above!

		//Fixing bug - Changing Triangle Forming Orientation
		x_l4 = x_l4 + cos(ang_l4*(M_PI/180.0))*len_l4;
		y_l4 = y_l4 + sin(ang_l4*(M_PI/180.0))*len_l4;
		ang_l4 -= 180.0;

		//Each line forms four new lines...
		newLines.push_back( new Line( x_l1, y_l1, len_l1, ang_l1 ) );
		newLines.push_back( new Line( x_l2, y_l2, len_l2, ang_l2 ) );
		newLines.push_back( new Line( x_l3, y_l3, len_l3, ang_l3 ) );
		newLines.push_back( new Line( x_l4, y_l4, len_l4, ang_l4 ) );

		//...for deleting itself!
		delLines.push_back( (*itr) );
	}
	
	for(auto itr = newLines.begin(); itr != newLines.end(); itr++)
		lines.push_back( (*itr) ); //Adding new Line*(s)
		
	for(auto itr = delLines.begin(); itr != delLines.end(); itr++)
	{
		lines.remove( (*itr) ); //Deleting new Line*(s)
		delete (*itr);
	}
}

Phew! A big implementation really! Now, time for the action in the int main():
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
int main( int argc, char** args )
{
	SDL_Init(SDL_INIT_EVERYTHING); //Initializing SDL2
	window = SDL_CreateWindow( "Koch Fractal", SDL_WINDOWPOS_UNDEFINED,
SDL_WINDOWPOS_UNDEFINED, SCR_W, SCR_H, SDL_WINDOW_SHOWN ); //Creating window
	renderer = SDL_CreateRenderer( window, -1, SDL_RENDERER_ACCELERATED ); //Creating renderer
	
	SDL_SetRenderDrawColor(renderer,0,0,0,255); //Setting default screen color
	
	//Horizontal line
	//lines.push_back( new Line(SCR_W-10,SCR_H/2.0, SCR_W-20,180.0) );
	
	//Vertical line
	//lines.push_back( new Line(SCR_W/1.5,10, SCR_H-20,90.0) );
	
	//Equilateral Triangle for forming Koch Snowflake
	lines.push_back( new Line( SCR_W-100, 150, SCR_W-200, 180.0) );
	lines.push_back( new Line( 100, 150, SCR_W-200, 60.0) );
	Line* lineS = new Line( SCR_W-100, 150, SCR_W-200, 120.0);
	lineS->x += cos(lineS->angle *(M_PI/180.0))*lineS->length;
	lineS->y += sin(lineS->angle *(M_PI/180.0))*lineS->length;
	lineS->angle -= 180.0;
	lines.push_back( lineS );
	
	while(!quit) //The loop
	{
		
		while(SDL_PollEvent(&in)) //Polling Events
		{
			if(in.type == SDL_QUIT)
				quit = true;
		}
		
		SDL_RenderClear(renderer); //Clearing renderer
		
		for(auto itr = lines.begin(); itr != lines.end(); itr++)
			(*itr)->draw(); //Drawing all lines
		
		SDL_RenderPresent(renderer); //Updating screen
		
		SDL_Delay(2500); //Delay to show each iteration
		kochFractal(lines); //Applying Koch Fractal
	}
	
	for(auto itr = lines.begin(); itr != lines.end(); itr++)
		delete (*itr); //Deleting all lines at the end of a program
	
	SDL_DestroyRenderer(renderer);
	SDL_DestroyWindow(window);
	SDL_Quit(); //Clearing all SDL resources
	
	return 0;
}

The Results!

Following images show the result. It was executed on a mobile device using C4Droid, a program for running C++ programs on Android.

I hope that this excites you for more programming, algorithms and fractals. For more such things, visit my blog bacprogramming.wordpress.com.